carbon gasification
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 22)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
pp. 391
Author(s):  
Haiming Gu ◽  
Juan Yang ◽  
Guohui Song ◽  
Xiaobo Cui ◽  
Miaomiao Niu ◽  
...  

Chemical looping biomass gasification is a novel technology converting biomass into syngas, and the selection of oxygen carrier is key for efficient tar conversion. The performance of LaFe1-xNix as a robust catalytic oxygen carrier was investigated in the chemical looping conversion of toluene (tar model compound) into syngas in a fixed bed. LaM (M = Fe, Ni, Mn, Co, and Cu) was initially compared to evaluate the effect of transition metal on toluene conversion. LaFe (partial oxidation) and LaNi (catalytic pyrolysis) exhibited better performance in promoting syngas production than other oxygen carriers. Therefore, Ni-substituted ferrite LaFe1-xNix (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) was further developed. The effects of Ni-substitution, steam/carbon ratio (S/C), and temperature on toluene conversion into C1 and H2 were evaluated. Results showed that the synergistic effect of Fe and Ni promoted toluene conversion, improving H2 yield yet with serious carbon deposition. Steam addition promoted toluene steam reforming and carbon gasification. With S/C increasing from 0.8 to 2.0, the C1 and H2 yield increased from 73.9% to 97.5% and from 197.7% to 269.6%, respectively. The elevated temperature favored toluene conversion and C1 yield. LaFe0.6Ni0.4 exhibited strong reactivity stability during toluene conversion at S/C = 1.6 and 900 °C.


2021 ◽  
Vol 119 (24) ◽  
pp. 243905
Author(s):  
Yang Ran ◽  
André Boden ◽  
Felix Küster ◽  
Fengbo An ◽  
Andreas Richter ◽  
...  

Chemosphere ◽  
2021 ◽  
pp. 133457
Author(s):  
Xiaoxiao Wang ◽  
Yunfeng Ma ◽  
Xiaoqing Lin ◽  
Angjian Wu ◽  
Yifan Xiang ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 1
Author(s):  
Jia-Min Jin

There are two contents of this article. The first is briefly to review the experiment research on the catalysis mechanism of Carbon Gasification Reaction-CGR(C+CO2=2CO) from 60s -90s. The results show that the catalytic phenomenon is physical phenomenon rather than chemical, and the catalyst does not participate in the chemical reaction. The catalytic activity and selectivity of catalyst are related to the electronegativity or energy level of the catalyst. The second is to clarify the applications of CGR for save mankind. The lime is first proposed to capture CO2 in flue gas of power plant. The lime can be recycled. The coal is used to convert CO2 from cement steel produce into CO, producing both energy and lime and iron. The capture CO2 is used to treat waste such as firewood and plastic, eliminate white pollution. The author considers that using the CGR which has been used for a long time can solve the three problems which people worry about: energy exhaustion, environmental pollution and climate crisis.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1886
Author(s):  
Igor Donskoy ◽  
Aleksandr Kozlov

This study presents experimental studies of charcoal gasification with CO2 at different heating rates (1, 5, 10, 20, and 50 K min−1). The kinetics of the reaction C + CO2 under pore-diffusion control is studied. We propose a new method for the proper determination of activation energy during the processing of thermogravimetric curves of porous carbon gasification under conditions of pore-diffusion resistance. The results of the inverse kinetic problem solution are compared with different hypotheses about the regime of the investigated heterogeneous reaction process (kinetic, diffusion, pore-diffusion). The change of reaction regimes from kinetic to diffusion is detected during charcoal gasification at different heating rates. At heating rates of 5–20 K min−1, the values of activation energy of carbon gasification reaction in the carbon dioxide atmosphere, obtained by the proposed method, closely match the data found in the previous studies. The use of diffusion models in the processing of thermogravimetric curves determines the conditions under which conventional kinetic models fail to provide adequate information about the temperature dependence of the heterogeneous reaction rate.


2021 ◽  
Vol 7 (9) ◽  
pp. eabf0116
Author(s):  
Shiqi Huang ◽  
Shaoxian Li ◽  
Luis Francisco Villalobos ◽  
Mostapha Dakhchoune ◽  
Marina Micari ◽  
...  

Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2. However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm−2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.


2021 ◽  
Vol 118 (3) ◽  
pp. 301
Author(s):  
Qingbo Meng ◽  
Fanyu Meng ◽  
Li Zhan ◽  
Xiuli Xu ◽  
Jianglong Yu ◽  
...  

Low coke rate for blast furnace operation has been required in response to the rising cost of coking coals. To extend the utilisation of coal resources, semi-coke has been introduced to blast furnace ironmaking process in recent years, however, there are still many issues unclear about the effect of semi-coke on ironmaking process. In this study, the possibilities of using semi-coke as alternative fuel for nut coke were studied. The characteristics of semi-coke including mechanical strength, high-temperature strength/reactivity, carbon gasification as well as direct reduction were studied and compared with small size metallurgical cokes (nut cokes). The results showed that semi-coke has higher CRI values, especially at higher temperatures and in a mix-charging pattern. Semi-coke was found to have a higher gasification reaction rate and depleted at lower temperatures. The reduction results showed that with participating of semi-coke the reaction starts at lower temperatures. In addition, the study suggested that semi-coke exhibits the advantages of low ash and sulphur contents, although it has lower mechanical strength, it would protect the lump coke by shifting the carbon gasification to itself, therefore, mixing semi-coke would benefit the blast furnace operation and lower the coke rate.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 973
Author(s):  
Hanquan Zhang ◽  
Chaojie Hu ◽  
Wangjie Gao ◽  
Manman Lu

The Fe3O4 and Fe2SiO4 in copper slag were successfully reduced to metallic iron by coal-based direct reduction. Under the best reduction conditions of 1300 °C reduction temperature, 30 min reduction time, 35 wt.% coal dosage, and 20 wt.% CaO dosage (0.75 binary basicity), the Fe grade of obtained iron concentration achieved 91.55%, and the Fe recovery was 98.13%. The kinetic studies on reduction indicated that the reduction of copper slag was controlled by the interfacial reaction and carbon gasification at 1050 °C. When at a higher reduction temperature, the copper slag reduction was controlled by the diffusion of the gas. The integral kinetics model research illustrated that the reaction activation energy increased as the reduction of copper slag proceeded. The early reduction of Fe3O4 needed a low reaction activation energy. The subsequent reduction of Fe2SiO4 needed higher reaction activation energy compared with that of Fe3O4 reduction.


2020 ◽  
Vol 45 (43) ◽  
pp. 23368-23377 ◽  
Author(s):  
Fangyong Yu ◽  
Tingting Han ◽  
Yishang Wang ◽  
Yujiao Xie ◽  
Jinjin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document