SEISMIC BEHAVIOR OF ANCHORAGE IN DIVERSE LIQUID STORAGE STEEL TANKS BY ADDED-MASS METHOD
Deformation of liquid storage tanks and the interaction between fluid and structure result in a variety of possible failure mechanisms during earthquakes. Among all failure modes, base-anchor failure is this paper’s focus. Three cylindrical steel tanks with different H/D were selected to investigate dynamic loadings on the tank seismic responses. The added-mass method was used in the finite element modeling of the steel tanks and fluid, and numerical analyses were performed. The added-mass method results were compared to conventional method outcomes using two or more lumped-mass and equivalent springs for tank-liquid simulation (Housner method). It was found that the added-mass method results in greater forces on the anchors in comparison to the lumped-mass method.