scholarly journals CAPABILITY INDICES FOR CONTROL CHARTS BASED ON REGRESSION MODELS

Author(s):  
Fernanda Siqueira Souza ◽  
Danilo Cuzzuol Pedrini ◽  
Carla Schwengber Ten Caten

Process capability analysis is extremely important for optimization and quality improvement. It verifies whether the process under analysis is capable of producing items within engineering and customers’ specifications. The use of capability indices when assumptions are not satisfied leads to erroneous conclusions, compromising the study and analysis of the process, jeopardizing the fulfillment of requirements from management or external customers. Aiming at filling a gap identified in the literature, the main contributions of this work are: (i) proposition of capability indices for processes monitored through control charts based on regression models, for symmetric and asymmetric specifications; and (ii) comparison of the proposed indices with traditional capability indices through a simulated process.

2021 ◽  
Vol 25 (8) ◽  
pp. 1477-1482
Author(s):  
O.F. Odeyinka ◽  
F.O. Ogunwolu ◽  
O.P. Popoola ◽  
T.O. Oyedokun

Process capability analysis combines statistical tools and control charts with good engineering judgment to interpret and analyze the data representing a process. This work analyzes the process capability of a polypropylene bag producing company. The case study organization uses two plants for production and data was collected over a period of nine months for this study. Analysis showed that the output spread of plant 1 was greater than the specification interval spread which implies poor capability. There are non-conforming parts below the Lower Specification Limit (LSL: 500,000 metres) and above the Upper Specification Limit (USL: 600,000 metres) and that the output requires improvement. Similarly, the capability analysis of plant 2 shows that the overall output spread is greater than the specification interval spread (poor capability). The output centre in the specification and overall interval are vertically aligned, thus specifying that the output from plant 2 is also process centered and requires improvement. Recommendations were made to improve the outputs from each production plant.


Author(s):  
Gidion Karo Karo ◽  
Jessie Deborah R. Makapedua

<p>Process Capability is a tool that is often used in the process of quality improvement, especially for process improvement. This study uses a process capability analysis on crank shaft production line 2 for motorcycles. By using normality test data and process capability indices for calculation of Cp/Cpk, shows that most of the data obtained are not normally distributed, so need to transform the data into normal, which can then be followed by the calculation of process capability. For the calculation of Cp/Cpk, it was found that there were some machines that still need to get tight control to meet the specification. It shows that mass production is still less stable. In order to meet the specifications, it is necessary to improve the quality of the repair process to reduce the variation in the process.</p><p>Keywords: Process Capability, Quality Control, Process Improvement</p>


2021 ◽  
Author(s):  
Selin Yalçın ◽  
Ihsan Kaya

Abstract Process capability analysis (PCA) is an important statistical analysis approach for measuring and analyzing the ability of the process to meet specifications. This analysis has been applied by producing process capability indices (PCIs). \({C}_{p}\) and \({C}_{pk}\) are the most commonly used PCIs for this aim. Although they are completely effective statistics to analyze process’ capability, the complexity of the production processes based on uncertainty arising from human thinking, incomplete or vague information makes it difficult to analyze the process capability with precise values. When there is uncertain, complex, incomplete and inaccurate information, the capability of the process is successfully analyzed by using the fuzzy sets. Neutrosophic sets (NSs), one of the new fuzzy set extensions, have a significant role in modeling uncertainty, since they contain the membership functions of truth, indeterminacy, and falsity definitions rather than an only membership function. This feature provides a strong advantage for modeling uncertainty. In this paper, PCA has been performed based on NSs to overcome uncertainties of the process. For this purpose, specification limits (SLs) have been reconsidered by using NSs and two of the well-known process capability indices (PCIs) named \({C}_{p}\) and \({C}_{pk}\) have been reformulated. Finally, the neutrosophic process capability indices (NPCIs) named \({C}_{p}\) \(\left({\tilde{\stackrel{⃛}{C}}}_{p}\right)\) and \({C}_{pk}\) \(\left({\tilde{\stackrel{⃛}{C}}}_{pk}\right)\) have been derived for three cases that are created by defining SLs. Additionally, the obtained NPCIs have also been applied and confirmed on real case problems from automotive industry. The obtained results show that the NPCIs support the quality engineers to easily define SLs and obtain more flexible and realistic evaluations for PCA.


Author(s):  
Roxana González Álvarez ◽  
Aníbal Barrera García ◽  
Ana Beatriz Guerra Morffi ◽  
Juan Felipe Medina Mendieta

Statistical quality control is a set of tools and techniques that allows to verify, monitor and control the variability of processes to improve product quality and business competitiveness. The objective of this study was to evaluate the pasta production process of a company that belongs to the food industry sector in terms of stability and compliance of quality specifications. The Six Sigma improvement methodology was used, which focuses on identifying and eliminating the causes of variation in the processes. Data collection was accomplished by the use of different techniques, such as: interviews, brainstorming, review of documents, teamwork and direct observation. In addition, process documentation techniques and classical quality tools including Pareto chart, control charts, process capability analysis, histogram, Ishikawa diagram and experimental design were used. Multivariate data reduction techniques were also applied. The results showed for the quality characteristic Humidity that the process is out of statistical control and it is uncapable to meet the required specifications, for which the causes were investigated and improvement actions were proposed, achieving an increase in the sigma quality level.


2021 ◽  
pp. 589-595
Author(s):  
Na Zhao ◽  
Yumin He ◽  
Mingxin Zhang ◽  
Gaosheng Cui ◽  
Fuman Pan

2020 ◽  
Vol 38 (6A) ◽  
pp. 910-916
Author(s):  
Sohaib Khlil ◽  
Huthaifa Al-Khazraji ◽  
Zina Alabacy

Process capability indices are a powerful tool used by quality control engineering to measure the degree to which the process is or is not meeting the requirements. This paper studies the application of process capability indices in the evaluation of a process with asymmetric tolerances. The analyzed collected data of the cleaning liquid “Zahi”, was used to investigate the ability of the filling process to meet the requested specifications. Matlab software was used to plot control charts, normal probability, and histogram of the data gathered from the production line and further performed statistical calculations. It was observed from the control charts that the filling process is under control. In addition, it was revealed by the process capability indices that the process of filling the cleaning liquid bottle is not fitted with the target value but it is adequate.


2015 ◽  
Vol 775 ◽  
pp. 464-467
Author(s):  
Chang Hsien Hsu ◽  
Chun Ming Yang ◽  
Chi Yuan Chen ◽  
Erin Wei Ling Ding

The study was made to the Cpm based Process Capability Analysis Chart Cpm (PCACpm) to determine the resistance to ultraviolet radiation poor quality building materials and paints of those characteristics. Finally, sort and identify the characteristics of substandard quality improvement district in order of priority. The proposed method in this study not only to further be extended to other paint products, but also for quality management and process control capabilities of the products.


2012 ◽  
Vol 54 (2) ◽  
pp. 120-125 ◽  
Author(s):  
Funda Kahraman ◽  
Ugur Esme ◽  
Mustafa Kemal Kulekci ◽  
Yigit Kazancoglu

Author(s):  
Wenzhen Huang ◽  
Ankit Pahwa ◽  
Zhenyu Kong

Strong normality assumption is associated with widely used process capability indices such as cp, cpk. Violation of the assumption will mislead the interpretation in applications. A nonparametric method is proposed for density estimation of any unknown distribution. Kernels are used for density estimation and metropolis-hastings (M-H) algorithm is adopted to generate samples from the density. M-H sampling provides a tool to accommodate different kernel functions and flexibility of future extension to multivariate cases. Conformity (yield) based indices (yp, y) are adopted to replace cp, cpk. These indices can be conveniently assessed by the proposed kernel density based M-H algorithm (K-M-H). The method is validated by several simulation case studies.


Sign in / Sign up

Export Citation Format

Share Document