ORGANIZATION OF A DECENTRALIZED AND ANONYMOUS MESH NETWORK

Author(s):  
R. R. Abrarov ◽  
M. E. Burlakov

As part of this work, proposed the Mesh network architecture, which provides decentralization, security, anonymity and connection of devices without a dedicated router or Internet access. The nodes establish connections directly using Android P2P Wi-Fi technology, which complies with the Wi-Fi Direct standard. P2P Wi-Fi API organizes group communication and allows applications to connect to neighboring devices without the need for an Internet connection or access point. Despite the fact that in the Wi-Fi Direct standard there are no restrictions on connecting groups to each other, the Android Wi-Fi P2P API does not allow organize a connection between several groups. This is due to the fact that the IP addresses of owners of different groups in Wi-Fi Direct are always the same and unchanged. Communication between a P2P client and an inherited client that also owns another group is allowed in both directions. This provides connections between groups, where a P2P client acts as a proxy to access a neighboring group. Thus communication between nodes in a multigroup network is ensured through the use of transport layer tunnels installed in the logical topology and packet switching at the application level. When one or more nodes access the Internet, remote nodes outside the Wi-Fi coverage area communicate with the mesh through the application server. This architecture allows build a corporate, public or home network based on a wireless Mesh network, the nodes of which can be access points, computers and mobile devices of users.

2019 ◽  
Vol 01 (02) ◽  
pp. 103-115
Author(s):  
Durai Pandian M

The spread out of wireless mesh network has made possible the extended range of communication network that are impractical due to environmental changes in a wired access point, these wireless mesh network does not require much competence to set it up as it can be set very fast at a cheap rate, and the conveyancing of messages in it happens by selecting the shortest path, these wireless mesh built-in with irrepressible and invulnerable identities come with an endurance to temporary congestion and individual node failure. This results in an architecture providing a better coverage, flaw indulgent with higher bandwidth compared to other wireless distributed systems. But faces the limitation on power conservation. The battery activated mesh nodes loses their resources on perception, processing and transmission of the data’s, though these batteries or accumulators comes with energy regaining capability still draw backs show up as their nature of energy regaining are unexposed. So the performance analysis of fly wireless network which proposes a uninterrupted wireless mesh networks aims at providing a best measure of performance that is the best quality of service on the meshwork by providing an improved energy gleaning using potency segregation (IGPS) which empowers each node to have self- contained accumulation of energy achieving heightened adaption with energy consumption kept at a minimum. The gross functioning of the proposed is examined on the bases of delay and packet loss to prove the quality of service acquired.


Author(s):  
Kun-chan Lan ◽  
Zhe Wang ◽  
Mahbub Hassan ◽  
Tim Moors ◽  
Rodney Berriman ◽  
...  

Wireless mesh networks (WMN) have attracted considerable interest in recent years as a convenient, new technology. However, the suitability of WMN for mission-critical infrastructure applications remains by and large unknown, as protocols typically employed in WMN are, for the most part, not designed for real-time communications. In this chapter, the authors describe a wireless mesh network architecture to solve the communication needs of the traffic control system in Sydney. This system, known as SCATS and used in over 100 cities around the world — from individual traffic light controllers to regional computers and the central TMC —places stringent requirements on the reliability and latency of the data exchanges. The authors discuss experience in the deployment of an initial testbed consisting of 7 mesh nodes placed at intersections with traffic lights, and share the results and insights learned from measurements and initial trials in the process.


Author(s):  
Kun-Chan Lan

Wireless mesh networks (WMN) have attracted considerable interest in recent years as a convenient, flexible and low-cost alternative to wired communication infrastructures in many contexts. However, the great majority of research on metropolitan-scale WMN has been centered around maximization of available bandwidth, suitable for non-real-time applications such as Internet access for the general public. On the other hand, the suitability of WMN for missioncritical infrastructure applications remains by and large unknown, as protocols typically employed in WMN are, for the most part, not designed for realtime communications. In this chapter, we describe a real-world testbed, which sets a goal of designing a wireless mesh network architecture to solve the communication needs of the traffic control system in Sydney, Australia. This system, known as SCATS (Sydney Coordinated Adaptive Traffic System) and used in over 100 cities around the world, connects a hierarchy of several thousand devices -- from individual traffic light controllers to regional computers and the central Traffic Management Centre (TMC) - and places stringent requirements on the reliability and latency of the data exchanges. We discuss some issues in the deployment of this testbed consisting of 7 mesh nodes placed at intersections with traffic lights, and show some results from the testbed measurements.


2019 ◽  
Vol 8 (2) ◽  
pp. 2666-2670

Ubiquitous of modern era which utilises Hybrid Wireless Mesh Network (HWMN) topology which gave birth to ample of modern application which demands reliability, fault tolerance and scalability. HWSN topology utilises minimum of two or multiple standard network architectural topologies, in a fashion that the resultant network architecture doesn’t depict any particular topologies like bus, star or ring but as a combination of any of those standard topologies. Prime motive of the proposed Optimised Channel Assignment Algorithm (OCSA) is which focuses on priority oriented interference minimization for all the trees which are existed, and constraint in terms of delay for evolving tree addition. Interference Aware Bandwidth Reservation (IABR) provides controllability over data flow admission for end-to-end optimal bandwidth accommodation in Multi-Radio Multi-Channel (MRMC) wireless mesh network. Proposed Priority Based Interference Aware Bandwidth Reservation (PBIABR) utilises disseminated and polynomialtime heuristic oriented assignment in channel to minimize interference in WMN with the awareness of channel priority as a primary consideration. Interference and Priority of the channel are made indirectly proportional to each other. For the channel of high priority the path which has low interference is opted. In PBIABR the whole path delay constraint of tree is sub organised into multiple node, based on delay to identify the best node which embodies minimal interference. Dominant Performance Parameters (DPP) like Throughput, Packet Size, Propagation Interval and Average Energy under HWSN Scenario. All the DPP parameters are analysed for multiple flow parameters for Interference Aware Bandwidth Reservation (IABR) and Proposed Priority Based Interference Aware Bandwidth Reservation (PBIABR) conditions. Simulation results have been captured using Network Simulator 2 tools for HWSN creation and crafted to same readings as a graph for deep analysis. The proposed simulation results for hybrid scenario highlights a considerable performance hike for the performance parameters like Throughput (bps) vs Packet size (bytes), Average Energy (joule) vs Interval (sec) and Residual Energy (joule) vs Interval (sec) under PBIABR conditions compared with IABR simulation outcome. The results have been analysed for comparative study of each parameter deeply. Inference from the comparative analysis highlights the performance parameters of PBIABR is efficient than IABR.


2018 ◽  
Vol 7 (2) ◽  
pp. 273-283
Author(s):  
Januar Al Amien ◽  
Cuncun Wibowo

Universitas Muhammadiyah Riau memiliki sebuah jaringan nirkabel yang tidak dapat diakses secara mobail sehingga menyulitkan user dalam mengakses jaringan jika berpindah-pindah tempat dikarenakan setiap institusi memiliki protokol dan Service set identifier (SSID) yang berbeda-beda. Dengan banyaknya SSID yang berbeda-beda menyulitkan administrator dalam mengontrol jaringan nirkabel. Wirelees Mash Network (WMN) merupakan jaringan nirkabel yang menggunakan protokol Mesh Made Easy (MME) sehingga dengan penerapan jaringan menggunakan WMN dapat diakses secara mobail. Controller Access Point System Manager (CAPSMAN) merupakan sebuah pengontrol jaringan wireless yang dilakukan secara terpusat sehingga memudahkan administrator dalam pengontrolan jaringan. Network Devlopment Life Ciycle (NDLC) merupakan metode yang digunakan dalam tahapan penerepaan jaringan WMN. Dari hasil simulasi yang telah dilakukan dapat disimpulkan bahwa dengan menerapkan jaringan WMN dan menggunakan CAPSMAN jaringan wireless di Universitas Muhammadiyah Riau dapat diakses hanya dengan menggunakan satu SSID dapat diakses secara mobile dan dapat memudahkan administrator dalam pengontrolan jaringan yang dilakukan secara terpusat.


2013 ◽  
Vol 791-793 ◽  
pp. 1660-1663
Author(s):  
Ya Fang Lou ◽  
Zhi Jun Yuan

Wireless multi-hop mesh network (Wireless Mesh Network, WMN), is a new network technology developed from mobile Ad hoc, widely used in the world. The paper carried out in-depth research and outlook to the key technologies, network architecture, performance and characteristics and typical application scenarios of Wireless Mesh Network.


Sign in / Sign up

Export Citation Format

Share Document