scholarly journals An Empirical Bayes Information Criterion for Selecting Variables in Linear Mixed Models

2010 ◽  
Vol 40 (1) ◽  
pp. 111-131 ◽  
Author(s):  
Tatsuya Kubokawa ◽  
Muni S. Srivastava
2016 ◽  
Vol 83 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Navid Ghavi Hossein-Zadeh

The aim of this study was to compare seven non-linear mathematical models (Brody, Wood, Dhanoa, Sikka, Nelder, Rook and Dijkstra) to examine their efficiency in describing the lactation curves for milk fat to protein ratio (FPR) in Iranian buffaloes. Data were 43 818 test-day records for FPR from the first three lactations of Iranian buffaloes which were collected on 523 dairy herds in the period from 1996 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly FPR records of buffaloes using the non-linear mixed model procedure (PROC NLMIXED) in SAS and the parameters were estimated. The models were tested for goodness of fit using Akaike's information criterion (AIC), Bayesian information criterion (BIC) and log maximum likelihood (−2 Log L). The Nelder and Sikka mixed models provided the best fit of lactation curve for FPR in the first and second lactations of Iranian buffaloes, respectively. However, Wood, Dhanoa and Sikka mixed models provided the best fit of lactation curve for FPR in the third parity buffaloes. Evaluation of first, second and third lactation features showed that all models, except for Dijkstra model in the third lactation, under-predicted test time at which daily FPR was minimum. On the other hand, minimum FPR was over-predicted by all equations. Evaluation of the different models used in this study indicated that non-linear mixed models were sufficient for fitting test-day FPR records of Iranian buffaloes.


Biometrika ◽  
2010 ◽  
Vol 97 (4) ◽  
pp. 773-789 ◽  
Author(s):  
Sonja Greven ◽  
Thomas Kneib

Abstract In linear mixed models, model selection frequently includes the selection of random effects. Two versions of the Akaike information criterion, aic, have been used, based either on the marginal or on the conditional distribution. We show that the marginal aic is not an asymptotically unbiased estimator of the Akaike information, and favours smaller models without random effects. For the conditional aic, we show that ignoring estimation uncertainty in the random effects covariance matrix, as is common practice, induces a bias that can lead to the selection of any random effect not predicted to be exactly zero. We derive an analytic representation of a corrected version of the conditional aic, which avoids the high computational cost and imprecision of available numerical approximations. An implementation in an R package (R Development Core Team, 2010) is provided. All theoretical results are illustrated in simulation studies, and their impact in practice is investigated in an analysis of childhood malnutrition in Zambia.


2021 ◽  
Vol 13 (6) ◽  
pp. 3274
Author(s):  
Suzanne Maas ◽  
Paraskevas Nikolaou ◽  
Maria Attard ◽  
Loukas Dimitriou

Bicycle sharing systems (BSSs) have been implemented in cities worldwide in an attempt to promote cycling. Despite exhibiting characteristics considered to be barriers to cycling, such as hot summers, hilliness and car-oriented infrastructure, Southern European island cities and tourist destinations Limassol (Cyprus), Las Palmas de Gran Canaria (Canary Islands, Spain) and the Valletta conurbation (Malta) are all experiencing the implementation of BSSs and policies to promote cycling. In this study, a year of trip data and secondary datasets are used to analyze dock-based BSS usage in the three case-study cities. How land use, socio-economic, network and temporal factors influence BSS use at station locations, both as an origin and as a destination, was examined using bivariate correlation analysis and through the development of linear mixed models for each case study. Bivariate correlations showed significant positive associations with the number of cafes and restaurants, vicinity to the beach or promenade and the percentage of foreign population at the BSS station locations in all cities. A positive relation with cycling infrastructure was evident in Limassol and Las Palmas de Gran Canaria, but not in Malta, as no cycling infrastructure is present in the island’s conurbation, where the BSS is primarily operational. Elevation had a negative association with BSS use in all three cities. In Limassol and Malta, where seasonality in weather patterns is strongest, a negative effect of rainfall and a positive effect of higher temperature were observed. Although there was a positive association between BSS use and the number of visiting tourists in Limassol and Malta, this is predominantly explained through the multi-collinearity with weather factors rather than by intensive use of the BSS by tourists. The linear mixed models showed more fine-grained results and explained differences in BSS use at stations, including differences for station use as an origin and as a destination. The insights from the correlation analysis and linear mixed models can be used to inform policies promoting cycling and BSS use and support sustainable mobility policies in the case-study cities and cities with similar characteristics.


Risks ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Karim Barigou ◽  
Stéphane Loisel ◽  
Yahia Salhi

Predicting the evolution of mortality rates plays a central role for life insurance and pension funds. Standard single population models typically suffer from two major drawbacks: on the one hand, they use a large number of parameters compared to the sample size and, on the other hand, model choice is still often based on in-sample criterion, such as the Bayes information criterion (BIC), and therefore not on the ability to predict. In this paper, we develop a model based on a decomposition of the mortality surface into a polynomial basis. Then, we show how regularization techniques and cross-validation can be used to obtain a parsimonious and coherent predictive model for mortality forecasting. We analyze how COVID-19-type effects can affect predictions in our approach and in the classical one. In particular, death rates forecasts tend to be more robust compared to models with a cohort effect, and the regularized model outperforms the so-called P-spline model in terms of prediction and stability.


2019 ◽  
Vol 38 (30) ◽  
pp. 5603-5622 ◽  
Author(s):  
Bernard G. Francq ◽  
Dan Lin ◽  
Walter Hoyer

Sign in / Sign up

Export Citation Format

Share Document