scholarly journals Flexible Tranmission Elements for Grid Optimization

The article dwells upon optimizing, reduction of losses in, and improving the stability of grids by implementing devices that affect the parameters and power flows in a grid. State-of-the-art technology for better control is crucial for the development of electric power systems. FACTS technologies or flexible alternating current transmission systems, essentially transform the grid from a passive electricity transport into a device that actively controls the grid parameters. The article analyzes the development of a 500/220/110 kV grid that uses parameter-affective devices: SVC, BSK, LCD. Steady-state parameters, active power losses, and electric power losses were calculated for a year before and after the devices were deployed. Each device was therefore analyzed for effectiveness. The parameters of the SVC-equipped 500/220/110 kV grid were calculated for emergency operation with the 500 kV line being offline. Thus, the paper also analyzes the emergency performance of the SVC.

2018 ◽  
Vol 7 (4.38) ◽  
pp. 1104
Author(s):  
Chemborisova N.Sh. ◽  
. .

To ensure the efficiency of the regime of electric power systems (EPS) most of the time should work near their physical limits, including the conditions of static aperiodic stability. To calculate the margin factors for active power corresponding to the existing scheme-operational situations (adaptive), when using the aggregate indicators of the mode in which the second derivatives are selected from the total active power losses in the network according to the controlled parameter. Safety factors allow you to separate the area "flow" modes, in which when equal to perturbing influences will have received a large response from areas of normal functioning.  


Author(s):  
Souhil Mouassa ◽  
Tarek Bouktir

Purpose In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems. Design/methodology/approach A MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed. Findings Three test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions. Originality/value The proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus.


Vestnik MEI ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 11-18
Author(s):  
Nailia Sh. Chemborisova ◽  
◽  
Ivan D. Chernenkov ◽  

The problem of selecting the electric power system control nodes is studied. By performing control of these modes, matters concerned with providing reliable power supply of the required quality to consumers can be settled in the most efficient manner. As an example, a fragment of the electric power system mathematical model used in the Finist mode-setting simulator for a power system dispatch control center operator is considered, which represents a highly branched electrical network consisting of eleven 110 kV nodes, three 220 kV nodes connected with the system, and two generator nodes. A new procedure for selecting the control nodes is proposed, which takes into account a combination of different indicators having different measurement units, dimensions and scales is proposed. These indicators characterize the following properties of power system nodes: the reactive power fraction absorbed at a node, the sensitivity of voltage to reactive load variations, the number of connected power lines, and statistical indicators characterizing the change of voltage at the nodes and reactive power flows for different options of installing the reactive power compensation devices. For combined use of these indicators, they were ranked according to the efficiency of installing reactive power compensation devices in the system. For each indicator, a scale of five ranks (intervals) is set, which determine the preferences (qualitative judgments) of the researcher in evaluating the reactive power compensation devices installation efficiency at the system nodes. The highest rank (5) corresponds to the maximum efficiency, and the lowest rank (1) corresponds to the minimum efficiency. To calculate the individual (integral) priority indicator of installing reactive power compensation devices, the ranks of indicators are added together, and their sum is divided by the product of the number of ranks by the number of the used indicators (features). Based on the calculation results, the rating (location) of each node is determined, and the nodes for installing the reactive power compensation devices are selected according to their effect on ensuring the electric power system operation reliability, active power losses in the network, and voltage regulation. Thus, a new procedure is presented for determining the integral indicators for comprehensively estimating the properties of complex electric power system nodes and selecting the controlled nodes using a system of various indicators. These indicators characterize the studied nodes in terms of the efficiency of installing reactive power compensation devices to reduce active power losses in the network, voltage regulation, and ensuring the electric power system operational reliability. The validity of the results obtained in the study is confirmed by their comparison with the indicators of the balance-conductivity method, which has proven itself in solving problems connected with determining the nodes for controlling electric power system operation modes.


2018 ◽  
Vol 7 (3.1) ◽  
pp. 178
Author(s):  
S Felix Stephen ◽  
Dr I. Jacob Raglend

In power systems, voltage instability problems occur due to its continuous demand in heavily loaded networks. So it is essential to stabilize the voltage levels in power systems. The stabilization of power systems can be improved by Flexible Alternating Current Transmission System (FACTS) devices. One of the FACTS devices named Static Synchronous Compensator (STATCOM) injects the compensating current in phase quadrature with line voltage and replicate as inductive reactance to produce capacitive power for the AC grid or as capacitive reactance to draw inductive power from the AC grid for controlling power flow in the line. This paper proposes Adaptive PI control over conventional PI that normally self-adjusts the controller gains under disturbances and helps in improving the performance and attaining a preferred response, irrespective of the change of working conditions. The work is implemented under MATLAB/SIMULINK environment. This method performs more efficient than the original PI with fixed control gains and also improves the system response speed consistently.  


JURNAL ELTEK ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 55
Author(s):  
Rohmanita Duanaputri ◽  
Imron Ridzki ◽  
Egar Rahmat Maulana ◽  
Ayusta Lukita Wardani

  Kestabilan suatu sistem tenaga listrik sendiri merupakan kemampuan sebuah sistem tenaga listrik dalam mempertahankan tegangan, frekuensi, dan daya di setiap bus sistem interkoneksi pada kondisi normal baik sebelum dan sesudah terjadinya gangguan. Sistem akan memasuki keadaan ketidakstabilan ketika terjadi gangguan, peningkatan permintaan beban dan adanya perubahan kondisi sistem, keadaan tersebut akan menyebabkan penurunan performa sistem tenaga listrik. Pada tahun 2015-2019 pulau madura hanya terdapat lima gardu induk, seiring dengan pertambahan kebutuhan tenaga listrik di beberapa wilayah pulau madura, untuk memperbaiki mutu dan keandalan penyaluran tenaga listrik ke konsumen, hal inilah yang mendukung proyek penambahan Gardu Induk Guluk Guluk. Gardu Induk Guluk-Guluk merupakan salah satu bagian dari sub sistem Krian Gresik. Dengan adanya penambahan Gardu Induk Guluk-Guluk tersebut akan berpengaruh terhadap aliran daya dan tegangan pada sistem tenaga listrik. Analisis dilakukan pada kondisi normal sebelum dan setelah adanya Gardu Induk Guluk-Guluk. Kondisi tegangan pada sub sistem Krian Gresik saat sebelum dan sesudah pembangunan Gardu Induk Guluk-Guluk masih memenuhi standart, namun ada beberapa bus yang mengalami penurunan tegangan dibawah 95%. Gardu Induk yang mengalami penurunan tegangan dibawah 95% sebelum pembangunan Gardu Induk Guluk-Guluk, yaitu pada Gardu Induk Bunduran, Gardu Induk Porong, dan Gardu Induk Maspion. Saat setelah pembangunan Gardu Induk Guluk-Guluk, terdapat penambahan Gardu induk yang mengalami penurunan nilai tegangan, yaitu Gardu Induk Sampang, Gardu Induk Pamekasan, Gardu Induk Guluk-Guluk, dan Gardu Induk Sumenep. Aliran daya terbesar saat terjadi penurunan tegangan adalah pada bus Bus 1 Bunduran. The stability of an electric power system itself is the ability of an electric power system to maintain the voltage, frequency, and power in each interconnecting bus system in normal conditions both before and before the disturbance. The system will enter a state of instability when there is a disturbance, an increase in load demand and a change in system conditions, this situation will cause a decrease in the performance of the electric power system. In 2015-2019 Madura Island there are five substations, along with the increasing need for energy in the Madura Island area, to improve some and control electric power, this is what supports the addition of Guluk-Guluk Substations. Guluk-Guluk Substation is one part of the Krian Gresik sub-system. With the addition of the Guluk-Guluk Substation, it will affect the flow of power and voltage in the electric power system. The analysis was carried out under normal conditions before and after the Guluk-Guluk Substation. The voltage conditions in the Krian Gresik sub-system before and before the construction of the Guluk-Guluk Substation still met the standard, but there were several buses that experienced a voltage drop below 95%. Substations that experienced a voltage drop below 95% before the construction of the Guluk-Guluk Substations, namely the Bunduran Substation, Porong Substation, and Maspion Substation. After the construction of the Guluk-Guluk Substation, there were additional substations that experienced a decrease in voltage values, namely the Sampang Substation, Pamekasan Substation, Guluk-Guluk Substation, and Sumenep Substation. The largest power flow when there is a voltage drop is on the Bus 1 Bunduran.


Author(s):  
Adedayo A. Yusuff ◽  
Thapelo C. Mosetlhe ◽  
Temitope Raphael Ayodele

Abstract This paper presents a method for allocating active power losses in electric power networks to generators. A technique that uses current distribution factor is used to allocate losses to generator nodes. The core of the allocation scheme is based on graph theory and flows distribution in a network. Losses are only allocated based on the segment of a network that is used for power evacuation. Models of IEEE 14, 39, 57 and 118 test systems in PYPOWER 5.12 were used to test the scheme. It was observed that although the total network losses is minimised when optimal power flow is used for scheduling generation, however that does not translate to minimisation of loss allocation to some generators. The results obtained show that, the scheme can be used to allocate transmission network losses to generation nodes in electric power networks in a fair manner.


Sign in / Sign up

Export Citation Format

Share Document