Study on the Vanadium Redox Flow Battery using Cation Exchange Membrane and Ammonium Metavanadate

2021 ◽  
Vol 31 (4) ◽  
pp. 262-267
Author(s):  
Bo-Young Jung ◽  
Cheol-Hwi Ryu ◽  
Gab-Jin Hwang
2022 ◽  
Author(s):  
Rajaram K. Nagarale ◽  
Sooraj Sreenath ◽  
Chetan Mohan Pawar ◽  
Priyanka Bavdane ◽  
Devendra Y Nikumbe

We report on the synthesis and characterization of polyethylene-styrene-divinylbenzene-based interpolymer cation exchange membrane (ICEM) and its applicability as a separator in vanadium redox flow battery (VRFB). ICEM preparation involved radical...


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 867
Author(s):  
Ha-Neul Moon ◽  
Hyeon-Bee Song ◽  
Moon-Sung Kang

In this work, we developed pore-filled ion-exchange membranes (PFIEMs) fabricated for the application to an all-vanadium redox flow battery (VRFB) by filling a hydrocarbon-based ionomer containing a fluorine moiety into the pores of a porous polyethylene (PE) substrate having excellent physical and chemical stabilities. The prepared PFIEMs were shown to possess superior tensile strength (i.e., 136.6 MPa for anion-exchange membrane; 129.9 MPa for cation-exchange membrane) and lower electrical resistance compared with commercial membranes by employing a thin porous PE substrate as a reinforcing material. In addition, by introducing a fluorine moiety into the filling ionomer along with the use of the porous PE substrate, the oxidation stability of the PFIEMs could be greatly improved, and the permeability of vanadium ions could also be significantly reduced. As a result of the evaluation of the charge–discharge performance in the VRFB, it was revealed that the higher the fluorine content in the PFIEMs was, the higher the current efficiency was. Moreover, the voltage efficiency of the PFIEMs was shown to be higher than those of the commercial membranes due to the lower electrical resistance. Consequently, both of the pore-filled anion- and cation-exchange membranes showed superior charge–discharge performances in the VRFB compared with those of hydrocarbon-based commercial membranes.


2016 ◽  
Vol 78 (12) ◽  
Author(s):  
Saidatul Sophia Sha’rani ◽  
Ebrahim Abouzari Lotf ◽  
Arshad Ahmad ◽  
Wan Atika Wan Ibrahim ◽  
Mohamed Mahmoud El-sayed Nasef ◽  
...  

The performance of vanadium redox flow battery (VRFB) is highly dependent on the efficiency of the membrane. Generally, anion exchange membranes and cation exchange membranes can be applied in the VRFB. In this paperwork, AMI-7001S anion exchange membrane and CMI-7000S cation exchange membranes were tested for their suitability in the VRFB application. Both of the membranes were originally used for electrocoat and water treatment system. In order to study the behavior of the membranes in the VRFB, several tests were performed. This includes VO2+ ion permeability, ionic conductivity, ion selectivity, chemical stability and single cell performance. The results obtained were compared to Nafion 117 which is a proton exchange membrane. This membrane is one of the most established membranes for VRFB. From the experiment, it can be summarized that the membranes are unsuitable to be used in VRFB. This is due to the low ion selectivity, poor chemical stability and high resistance.


Batteries ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 48 ◽  
Author(s):  
Arjun Bhattarai ◽  
Purna Ghimire ◽  
Adam Whitehead ◽  
Rüdiger Schweiss ◽  
Günther Scherer ◽  
...  

The vanadium redox flow battery (VRFB) is one of the most mature and commercially available electrochemical technologies for large-scale energy storage applications. The VRFB has unique advantages, such as separation of power and energy capacity, long lifetime (>20 years), stable performance under deep discharge cycling, few safety issues and easy recyclability. Despite these benefits, practical VRFB operation suffers from electrolyte imbalance, which is primarily due to the transfer of water and vanadium ions through the ion-exchange membranes. This can cause a cumulative capacity loss if the electrolytes are not rebalanced. In commercial systems, periodic complete or partial remixing of electrolyte is performed using a by-pass line. However, frequent mixing impacts the usable energy and requires extra hardware. To address this problem, research has focused on developing new membranes with higher selectivity and minimal crossover. In contrast, this study presents two alternative concepts to minimize capacity fade that would be of great practical benefit and are easy to implement: (1) introducing a hydraulic shunt between the electrolyte tanks and (2) having stacks containing both anion and cation exchange membranes. It will be shown that the hydraulic shunt is effective in passively resolving the continuous capacity loss without detrimentally influencing the energy efficiency. Similarly, the combination of anion and cation exchange membranes reduced the net electrolyte flux, reducing capacity loss. Both approaches work efficiently and passively to reduce capacity fade during operation of a flow battery system.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 915
Author(s):  
Hyeongrae Cho ◽  
Vladimir Atanasov ◽  
Henning M. Krieg ◽  
Jochen A. Kerres

In order to evaluate the performance of the anion exchange membranes in a vanadium redox flow battery, a novel anion exchange polymer was synthesized via a three step process. Firstly, 1-(2-dimethylaminoethyl)-5-mercaptotetrazole was grafted onto poly(pentafluorostyrene) by nucleophilic F/S exchange. Secondly, the tertiary amino groups were quaternized by using iodomethane to provide anion exchange sites. Finally, the synthesized polymer was blended with polybenzimidazole to be applied in vanadium redox flow battery. The blend membranes exhibited better single cell battery performance in terms of efficiencies, open circuit voltage test and charge-discharge cycling test than that of a Nafion 212 membrane. The battery performance results of synthesized blend membranes suggest that those novel anion exchange membranes are promising candidates for vanadium redox flow batteries.


Sign in / Sign up

Export Citation Format

Share Document