scholarly journals PEMODELAN REGRESI RIDGE ROBUST-MM DALAM PENANGANAN MULTIKOLINIERITAS DAN PENCILAN (Studi Kasus : Faktor-Faktor yang Mempengaruhi AKB di Jawa Tengah Tahun 2017)

2019 ◽  
Vol 8 (1) ◽  
pp. 24-34
Author(s):  
Eka Destiyani ◽  
Rita Rahmawati ◽  
Suparti Suparti

The Ordinary Least Squares (OLS) is one of the most commonly used method to estimate linear regression parameters. If multicollinearity is exist within predictor variables especially coupled with the outliers, then regression analysis with OLS is no longer used. One method that can be used to solve a multicollinearity and outliers problems is Ridge Robust-MM Regression. Ridge Robust-MM  Regression is a modification of the Ridge Regression method based on the MM-estimator of Robust Regression. The case study in this research is AKB in Central Java 2017 influenced by population dencity, the precentage of households behaving in a clean and healthy life, the number of low-weighted baby born, the number of babies who are given exclusive breastfeeding, the number of babies that receiving a neonatal visit once, and the number of babies who get health services. The result of estimation using OLS show that there is violation of multicollinearity and also the presence of outliers. Applied ridge robust-MM regression to case study proves ridge robust regression can improve parameter estimation. Based on t test at 5% significance level most of predictor variables have significant effect to variable AKB. The influence value of predictor variables to AKB is 47.68% and MSE value is 0.01538.Keywords:  Ordinary  Least  Squares  (OLS),  Multicollinearity,  Outliers,  RidgeRegression, Robust Regression, AKB.

2019 ◽  
Vol 8 (1) ◽  
pp. 81-92
Author(s):  
Dhea Kurnia Mubyarjati ◽  
Abdul Hoyyi ◽  
Hasbi Yasin

Multiple Linear Regression can be solved by using the Ordinary Least Squares (OLS). Some classic assumptions must be fulfilled namely normality, homoskedasticity, non-multicollinearity, and non-autocorrelation. However, violations of assumptions can occur due to outliers so the estimator obtained is biased and inefficient. In statistics, robust regression is one of method can be used to deal with outliers. Robust regression has several estimators, one of them is Scale estimator (S-estimator) used in this research. Case for this reasearch is fish production per district / city in Central Java in 2015-2016 which is influenced by the number of fishermen, number of vessels, number of trips, number of fishing units, and number of households / fishing companies. Approximate estimation with the Ordinary Least Squares occur in violation of the assumptions of normality, autocorrelation and homoskedasticity this occurs because there are outliers. Based on the t- test at 5% significance level can be concluded that several predictor variables there are the number of fishermen, the number of ships, the number of trips and the number of fishing units have a significant effect on the variables of fish production. The influence value of predictor variables to fish production is 88,006% and MSE value is 7109,519. GUI Matlab is program for robust regression for S-estimator to make it easier for users to do calculations. Keywords: Ordinary Least Squares (OLS), Outliers, Robust Regression, Fish Production, GUI Matlab.


2021 ◽  
Vol 10 (3) ◽  
pp. 402-412
Author(s):  
Anggun Perdana Aji Pangesti ◽  
Sugito Sugito ◽  
Hasbi Yasin

The Ordinary Least Squares (OLS) is one of the most commonly used method to estimate linier regression parameters. If there is a violation of assumptions such as multicolliniearity especially coupled with the outliers, then the regression with OLS is no longer used. One method can be used to solved the multicollinearity and outliers problem is Ridge Robust Regression.  Ridge Robust Regression is a modification of ridge regression method used to solve the multicolliniearity and using some estimators of robust regression used to solve the outlier, the estimator including : Maximum likelihood estimator (M-estimator), Scale estimator (S-estimator), and Method of moment estimator (MM-estimator). The case study can be used with this method is data with multicollinearity and outlier, the case study in this research is poverty in Central Java 2020 influenced by life expentancy, unemployment number, GRDP rate, dependency ratio, human development index, the precentage of population over 15 years of age with the highest education in primary school, mean years school. The result of estimation using OLS show that there is a multicollinearity and presence an outliers. Applied the ridge robust regression to case study prove that ridge robust regression can improve parameter estimation. The best ridge robust regression model is Ridge Robust Regression S-Estimator. The influence value of predictor variabels to poverty is 73,08% and the MSE value is 0,00791. 


2014 ◽  
Vol 71 (1) ◽  
Author(s):  
Bello Abdulkadir Rasheed ◽  
Robiah Adnan ◽  
Seyed Ehsan Saffari ◽  
Kafi Dano Pati

In a linear regression model, the ordinary least squares (OLS) method is considered the best method to estimate the regression parameters if the assumptions are met. However, if the data does not satisfy the underlying assumptions, the results will be misleading. The violation for the assumption of constant variance in the least squares regression is caused by the presence of outliers and heteroscedasticity in the data. This assumption of constant variance (homoscedasticity) is very important in linear regression in which the least squares estimators enjoy the property of minimum variance. Therefor e robust regression method is required to handle the problem of outlier in the data. However, this research will use the weighted least square techniques to estimate the parameter of regression coefficients when the assumption of error variance is violated in the data. Estimation of WLS is the same as carrying out the OLS in a transformed variables procedure. The WLS can easily be affected by outliers. To remedy this, We have suggested a strong technique for the estimation of regression parameters in the existence of heteroscedasticity and outliers. Here we apply the robust regression of M-estimation using iterative reweighted least squares (IRWLS) of Huber and Tukey Bisquare function and resistance regression estimator of least trimmed squares to estimating the model parameters of state-wide crime of united states in 1993. The outcomes from the study indicate the estimators obtained from the M-estimation techniques and the least trimmed method are more effective compared with those obtained from the OLS.


2019 ◽  
Vol 8 (3) ◽  
pp. 377-388
Author(s):  
Aulia Desy Deria ◽  
Abdul Hoyyi ◽  
Mustafid Mustafid

Robust regression is one of the regression methods that robust from effect of outliers. For the regression with the parameter estimation used Ordinary Least Squares (OLS), outliers can caused assumption violation, so the estimator obtained became bias and inefficient. As a solution, robust regression M-estimation with Andrew, Ramsay and Welsch weight function can be used to overcome the presence of outliers. The aim of this study was to develop a model for case study of poverty in Central Java 2017 influenced by the number of unemployment, population, school participation rate, Human Development Index (HDI), and inflation. The result of estimation using OLS show that there is violation of heteroskedasticity caused by the presence outliers. Applied robust regression to case study proves robust regression can solve outliers and improve parameter estimation. The best robust regression model is robust regression M-estimation with Andrew weight function. The influence value of predictor variables to poverty is 92,7714% and MSE value is 370,8817. Keywords: Outliers, Robust Regression, M-Estimator, Andrew, Ramsay, Welsch


1984 ◽  
Vol 21 (3) ◽  
pp. 268-277 ◽  
Author(s):  
Vijay Mahajan ◽  
Subhash Sharma ◽  
Yoram Wind

In marketing models, the presence of aberrant response values or outliers in data can distort the parameter estimates or regression coefficients obtained by means of ordinary least squares. The authors demonstrate the potential usefulness of the robust regression analysis in treating influential response values in marketing data.


1986 ◽  
Vol 16 (2) ◽  
pp. 249-255 ◽  
Author(s):  
Edwin J. Green ◽  
William E. Strawderman

A Stein-rule estimator, which shrinks least squares estimates of regression parameters toward their weighted average, was employed to estimate the coefficient in the constant form factor volume equation for 18 species simultaneously. The Stein-rule procedure was applied to ordinary least squares estimates and weighted least squares estimates. Simulation tests on independent validation data sets revealed that the Stein-rule estimates were biased, but predicted better than the corresponding least squares estimates. The Stein-rule procedures also yielded lower estimated mean square errors for the volume equation coefficient than the corresponding least squares procedure. Different methods of withdrawing sample data from the total sample available for each species revealed that the superiority of Stein-rule procedures over least squares decreased as the sample size increased and that the Stein-rule procedures were robust to unequal sample sizes, at least on the scale studied here.


2021 ◽  
Vol 923 (1) ◽  
pp. 012070
Author(s):  
Sadeq H. Hussein ◽  
Hayder Hamed Blaw

Abstract This study aimed to detect the most important factor that affects dates production. About 108 questionary forms collecttted palm orchard farmers in Karbala to estimate the dates production function in Karbala governorate for the agricultural season 2021 (the district of Al-jadual Al-Gharby). The study distributed those formmmsss for about 10% of the total palm orchards in Al-jadual Al-Gharby district of the holy governorate of Karbala. The study used the method of ordinary Least squares (OLS) to estimate the mathematical model of the function. The results showed that the double Logarithmic function in terms of its estimation of the estimated Coefficients by one unit leads to a corresponding change in the produced quality of dates and the same direction by 0.188 0.808) % respectively, and that the capital variable is more in fluently in production than the work variable. As for the total production elasticity (the sum of the partial elasticities of the resources used), which represents returns to scale, it amounted to about (0.996), which indicates a decrease in the return to scale.


2004 ◽  
Vol 50 (11) ◽  
pp. 81-88 ◽  
Author(s):  
J.-L. Bertrand-Krajewski

In order to replace traditional sampling and analysis techniques, turbidimeters can be used to estimate TSS concentration in sewers, by means of sensor and site specific empirical equations established by linear regression of on-site turbidity T values with TSS concentrations C measured in corresponding samples. As the ordinary least-squares method is not able to account for measurement uncertainties in both T and C variables, an appropriate regression method is used to solve this difficulty and to evaluate correctly the uncertainty in TSS concentrations estimated from measured turbidity. The regression method is described, including detailed calculations of variances and covariance in the regression parameters. An example of application is given for a calibrated turbidimeter used in a combined sewer system, with data collected during three dry weather days. In order to show how the established regression could be used, an independent 24 hours long dry weather turbidity data series recorded at 2 min time interval is used, transformed into estimated TSS concentrations, and compared to TSS concentrations measured in samples. The comparison appears as satisfactory and suggests that turbidity measurements could replace traditional samples. Further developments, including wet weather periods and other types of sensors, are suggested.


1984 ◽  
Vol 54 (2) ◽  
pp. 559-566 ◽  
Author(s):  
Rashmi Garg

The ordinary least squares solution is generally applied to multiple regression problems in social sciences. When the intercorrelations among predictor variables are close to one, the estimates of regression coefficients obtained from ordinary least squares are very unstable. This situation is often referred to as near multicollinearity. When there is a problem of near mulricollinearity, the ridge regression provides an alternative to the ordinary least squares method. The ridge estimates are biased but more stable from sample to sample. The purpose of this article is to describe the method of ridge regression in a simple form and to provide examples of its application.


Sign in / Sign up

Export Citation Format

Share Document