scholarly journals FUNGSI WRIGHT SEBAGAI SOLUSI ANALITIK PERSAMAAN DIFUSI-GELOMBANG FRAKSIONAL PADA MEDIA VISKOELASTIS

2020 ◽  
Vol 3 (1) ◽  
pp. 19-33
Author(s):  
Ray Novita Yasa ◽  
Agus Yodi Gunawan

A fractional diffusion-wave equations in a fractional viscoelastic media can be constructed by using equations of motion and kinematic equations of viscoelasticmaterial in fractional order. This article concerns the fractional diffusion-wave equations in the fractional viscoelastic media for semi-infinite regions that satisfies signalling boundary value problems. Fractional derivative was used in Caputo sense. The analytical solution of the fractional diffusion-wave equation in the fractional viscoelastic media was solved by means of Laplace transform techniques in the term of Wright function for simple form solution. For general parameters, Numerical Inverse Laplace Transforms (NILT) was used to determine the solution.

Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 433 ◽  
Author(s):  
Bohdan Datsko ◽  
Igor Podlubny ◽  
Yuriy Povstenko

The time-fractional diffusion equation with mass absorption in a sphere is considered under harmonic impact on the surface of a sphere. The Caputo time-fractional derivative is used. The Laplace transform with respect to time and the finite sin-Fourier transform with respect to the spatial coordinate are employed. A graphical representation of the obtained analytical solution for different sets of the parameters including the order of fractional derivative is given.


2021 ◽  
Vol 24 (4) ◽  
pp. 1015-1034
Author(s):  
Paola Loreti ◽  
Daniela Sforza

Abstract We prove a “hidden” regularity result for weak solutions of time fractional diffusion-wave equations where the Caputo fractional derivative is of order α ∈ (1, 2). To establish such result we analyse the regularity properties of the weak solutions in suitable interpolation spaces.


2018 ◽  
Vol 21 (4) ◽  
pp. 869-900 ◽  
Author(s):  
Bazhlekova Emilia

Abstract Motivated by recently proposed generalizations of the diffusion-wave equation with the Caputo time fractional derivative of order α ∈ (1, 2), in the present survey paper a class of generalized time-fractional diffusion-wave equations is introduced. Its definition is based on the subordination principle for Volterra integral equations and involves the notion of complete Bernstein function. Various members of this class are surveyed, including the distributed-order time-fractional diffusion-wave equation and equations governing wave propagation in viscoelastic media with completely monotone relaxation moduli.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Wenping Chen ◽  
Shujuan Lü ◽  
Hu Chen ◽  
Lihua Jiang

Abstract In this paper, we solve the variable-coefficient fractional diffusion-wave equation in a bounded domain by the Legendre spectral method. The time fractional derivative is in the Caputo sense of order $\gamma \in (1,2)$ γ ∈ ( 1 , 2 ) . We propose two fully discrete schemes based on finite difference in temporal and Legendre spectral approximations in spatial discretization. For the first scheme, we discretize the time fractional derivative directly by the $L_{1}$ L 1 approximation coupled with the Crank–Nicolson technique. For the second scheme, we transform the equation into an equivalent form with respect to the Riemann–Liouville fractional integral operator. We give a rigorous analysis of the stability and convergence of the two fully discrete schemes. Numerical examples are carried out to verify the theoretical results.


Author(s):  
Joaquín Quintana Murillo ◽  
Santos Bravo Yuste

An explicit difference method is considered for solving fractional diffusion and fractional diffusion-wave equations where the time derivative is a fractional derivative in the Caputo form. For the fractional diffusion equation, the L1 discretization formula of the fractional derivative is employed, whereas the L2 discretization formula is used for the fractional diffusion-wave equation. In both equations, the spatial derivative is approximated by means of the three-point centered formula. The accuracy of the present method is similar to other well-known explicit difference schemes, but its region of stability is larger. The stability analysis is carried out by means of a kind of fractional von Neumann (or Fourier) method. The stability bound so obtained, which is given in terms of the Riemann zeta function, is checked numerically.


Author(s):  
Teodor M. Atanackovic ◽  
Stevan Pilipovic ◽  
Dusan Zorica

A Cauchy problem for a time distributed-order multi-dimensional diffusion-wave equation containing a forcing term is reinterpreted in the space of tempered distributions, and a distributional diffusion-wave equation is obtained. The distributional equation is solved in the general case of weight function (or distribution). Solutions are given in terms of solution kernels (Green's functions), which are studied separately for two cases. The first case is when the order of the fractional derivative is in the interval [0, 1], while, in the second case, the order of the fractional derivative is in the interval [0, 2]. Solutions of fractional diffusion-wave and fractional telegraph equations are obtained as special cases. Numerical experiments are also performed. An analogue of the maximum principle is also presented.


Author(s):  
Anatoly Kochubei

AbstractFor the fractional diffusion-wave equation with the Caputo-Djrbashian fractional derivative of order α ∈ (1, 2) with respect to the time variable, we prove an analog of the principle of limiting amplitude (well-known for the wave equation and some other hyperbolic equations) and a pointwise stabilization property of solutions (similar to a well-known property of the heat equation and some other parabolic equations).


Author(s):  
Yuriy Povstenko

AbstractThe time-fractional diffusion-wave equation is considered in an infinite cylinder in the case of three spatial coordinates r, ϕ and z. The Caputo fractional derivative of the order 0 < α ≤ 2 is used. Several examples of problems with Dirichlet and Neumann boundary conditions at a surface of the cylinder are solved using the integral transforms technique. Numerical results are illustrated graphically.


Sign in / Sign up

Export Citation Format

Share Document