scholarly journals Implementasi Jaringan Syaraf Tiruan Perambatan Balik untuk Memprediksi Harga Logam Mulia Emas Menggunakan Algoritma Lavenberg Marquardt

2013 ◽  
Vol 1 (2) ◽  
pp. 49
Author(s):  
Reza Najib Hidayat ◽  
R. Rizal Isnanto ◽  
Oky Dwi Nurhayati

Gold is one of commodities investment which its value continue to increase by year. The rising price of gold will encourage investors to choose to invest in gold rather than the stock market. With the risks that are relatively low, gold can give better resultsin accordance with its increasing price. In addition, gold can also be a safe value protector in the future.The Objectives of the research are to predict the price of gold using artificial neural networks backpropagations methods and to analyze best network used in prediction. In the process of training data, it is used some training parameters to decide the best gold prediction architecture. Comparative parameters that is used are the variation of the number of hidden layers, number of neurons in each hidden layer, learning rate, minimum gradients and fault tolerance. The results showed that the best architecture has an accuracy rate of 99,7604% of data training and test data at 98,849% with architecture combinations are have two hidden layer neurons combined 10-30, the error rate 0.00001 and 0.00001 of learning rate.

2020 ◽  
Vol 9 (1) ◽  
pp. 41-49
Author(s):  
Johanes Roisa Prabowo ◽  
Rukun Santoso ◽  
Hasbi Yasin

House is one aspect of the welfare of society that must be met, because house is the main need for human life besides clothing and food. The condition of the house as a good shelter can be known from the structure and facilities of buildings. This research aims to analyze the classification of house conditions is livable or not livable. The method used is artificial neural networks (ANN). ANN is a system information processing that has characteristics similar to biological neural networks. In this research the optimization method used is the conjugate gradient algorithm. The data used are data of Survei Sosial Ekonomi Nasional (Susenas) March 2018 Kor Keterangan Perumahan for Cilacap Regency. The data is divided into training data and testing data with the proportion that gives the highest average accuracy is 90% for training data and 10% for testing data. The best architecture obtained a model consisting of 8 neurons in input layer, 10 neurons in hidden layer and 1 neuron in output layer. The activation function used are bipolar sigmoid in the hidden layer and binary sigmoid in the output layer. The results of the analysis showed that ANN works very well for classification on house conditions in Cilacap Regency with an average accuracy of 98.96% at the training stage and 97.58% at the testing stage.Keywords: House, Classification, Artificial Neural Networks, Conjugate Gradient


Author(s):  
Osval Antonio Montesinos López ◽  
Abelardo Montesinos López ◽  
Jose Crossa

AbstractThis chapter provides elements for implementing deep neural networks (deep learning) for continuous outcomes. We give details of the hyperparameters to be tuned in deep neural networks and provide a general guide for doing this task with more probability of success. Then we explain the most popular deep learning frameworks that can be used to implement these models as well as the most popular optimizers available in many software programs for deep learning. Several practical examples with plant breeding data for implementing deep neural networks in the Keras library are outlined. These examples take into account many components in the predictor as well many hyperparameters (hidden layer, number of neurons, learning rate, optimizers, penalization, etc.) for which we also illustrate how the tuning process can be done to increase the probability of a successful application.


Author(s):  
Zulfikar Zulfikar ◽  
Anjar Wanto ◽  
Zulaini Masruro Nasution

The Large Trade Price Index (IHPB) is one of the economic indicators that contains index numbers and shows changes in the price of goods purchased by traders from consumers. This study uses Artificial Neural Networks (ANN) with the Backpropagation method. Artificial neural networks are branches of artificial intelligence that mimic or imitate the workings of the human brain. The data of this study are secondary data sourced from the Central Statistics Agency (BPS) from 2000 to 2017. The data is divided into 2 parts, namely training data and testing data. There are 5 architectural models used in this study. 8-15-1, 8-25-1, 8-26-1, 8-30-1 and 8-40-1. From the 5 architectural models used 1 best model was obtained, namely 8-25-1 with an accuracy rate of 85%, MSE 0.00100074 and 10000 iterations. So this model is good for predicting large trade price indexes according to sectors in Indonesia in the future.


Author(s):  
Haitham Baomar ◽  
Peter J. Bentley

AbstractWe describe the Intelligent Autopilot System (IAS), a fully autonomous autopilot capable of piloting large jets such as airliners by learning from experienced human pilots using Artificial Neural Networks. The IAS is capable of autonomously executing the required piloting tasks and handling the different flight phases to fly an aircraft from one airport to another including takeoff, climb, cruise, navigate, descent, approach, and land in simulation. In addition, the IAS is capable of autonomously landing large jets in the presence of extreme weather conditions including severe crosswind, gust, wind shear, and turbulence. The IAS is a potential solution to the limitations and robustness problems of modern autopilots such as the inability to execute complete flights, the inability to handle extreme weather conditions especially during approach and landing where the aircraft’s speed is relatively low, and the uncertainty factor is high, and the pilots shortage problem compared to the increasing aircraft demand. In this paper, we present the work done by collaborating with the aviation industry to provide training data for the IAS to learn from. The training data is used by Artificial Neural Networks to generate control models automatically. The control models imitate the skills of the human pilot when executing all the piloting tasks required to pilot an aircraft between two airports. In addition, we introduce new ANNs trained to control the aircraft’s elevators, elevators’ trim, throttle, flaps, and new ailerons and rudder ANNs to counter the effects of extreme weather conditions and land safely. Experiments show that small datasets containing single demonstrations are sufficient to train the IAS and achieve excellent performance by using clearly separable and traceable neural network modules which eliminate the black-box problem of large Artificial Intelligence methods such as Deep Learning. In addition, experiments show that the IAS can handle landing in extreme weather conditions beyond the capabilities of modern autopilots and even experienced human pilots. The proposed IAS is a novel approach towards achieving full control autonomy of large jets using ANN models that match the skills and abilities of experienced human pilots and beyond.


2021 ◽  
Author(s):  
Jakub Ważny ◽  
Michał Stefaniuk ◽  
Adam Cygal

AbstractArtificial neural networks method (ANNs) is a common estimation tool used for geophysical applications. Considering borehole data, when the need arises to supplement a missing well log interval or whole logging—ANNs provide a reliable solution. Supervised training of the network on a reliable set of borehole data values with further application of this network on unknown wells allows creation of synthetic values of missing geophysical parameters, e.g., resistivity. The main assumptions for boreholes are: representation of similar geological conditions and the use of similar techniques of well data collection. In the analyzed case, a set of Multilayer Perceptrons were trained on five separate chronostratigraphic intervals of borehole, considered as training data. The task was to predict missing deep laterolog (LLD) logging in a borehole representing the same sequence of layers within the Lublin Basin area. Correlation between well logs data exceeded 0.8. Subsequently, magnetotelluric parametric soundings were modeled and inverted on both boreholes. Analysis showed that congenial Occam 1D models had better fitting of TM mode of MT data in each case. Ipso facto, synthetic LLD log could be considered as a basis for geophysical and geological interpretation. ANNs provided solution for supplementing datasets based on this analytical approach.


Author(s):  
Serkan Kiranyaz ◽  
Junaid Malik ◽  
Habib Ben Abdallah ◽  
Turker Ince ◽  
Alexandros Iosifidis ◽  
...  

AbstractThe recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs) that are homogenous only with a linear neuron model. As a heterogenous network model, ONNs are based on a generalized neuron model that can encapsulate any set of non-linear operators to boost diversity and to learn highly complex and multi-modal functions or spaces with minimal network complexity and training data. However, the default search method to find optimal operators in ONNs, the so-called Greedy Iterative Search (GIS) method, usually takes several training sessions to find a single operator set per layer. This is not only computationally demanding, also the network heterogeneity is limited since the same set of operators will then be used for all neurons in each layer. To address this deficiency and exploit a superior level of heterogeneity, in this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the “Synaptic Plasticity” paradigm that poses the essential learning theory in biological neurons. During training, each operator set in the library can be evaluated by their synaptic plasticity level, ranked from the worst to the best, and an “elite” ONN can then be configured using the top-ranked operator sets found at each hidden layer. Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs and as a result, the performance gap over the CNNs further widens.


2021 ◽  
Vol 11 (15) ◽  
pp. 6723
Author(s):  
Ariana Raluca Hategan ◽  
Romulus Puscas ◽  
Gabriela Cristea ◽  
Adriana Dehelean ◽  
Francois Guyon ◽  
...  

The present work aims to test the potential of the application of Artificial Neural Networks (ANNs) for food authentication. For this purpose, honey was chosen as the working matrix. The samples were originated from two countries: Romania (50) and France (53), having as floral origins: acacia, linden, honeydew, colza, galium verum, coriander, sunflower, thyme, raspberry, lavender and chestnut. The ANNs were built on the isotope and elemental content of the investigated honey samples. This approach conducted to the development of a prediction model for geographical recognition with an accuracy of 96%. Alongside this work, distinct models were developed and tested, with the aim of identifying the most suitable configurations for this application. In this regard, improvements have been continuously performed; the most important of them consisted in overcoming the unwanted phenomenon of over-fitting, observed for the training data set. This was achieved by identifying appropriate values for the number of iterations over the training data and for the size and number of the hidden layers and by introducing of a dropout layer in the configuration of the neural structure. As a conclusion, ANNs can be successfully applied in food authenticity control, but with a degree of caution with respect to the “over optimization” of the correct classification percentage for the training sample set, which can lead to an over-fitted model.


2020 ◽  
Vol 8 (4) ◽  
pp. 469
Author(s):  
I Gusti Ngurah Alit Indrawan ◽  
I Made Widiartha

Artificial Neural Networks or commonly abbreviated as ANN is one branch of science from the field of artificial intelligence which is often used to solve various problems in fields that involve grouping and pattern recognition. This research aims to classify Letter Recognition datasets using Artificial Neural Networks which are weighted optimally using the Artificial Bee Colony algorithm. The best classification accuracy results from this study were 92.85% using a combination of 4 hidden layers with each hidden layer containing 10 neurons.


Sign in / Sign up

Export Citation Format

Share Document