scholarly journals Identifikasi Jenis Bambu Berdasarkan Tekstur Daun dengan Metode Gray Level Co-Occurrence Matrix dan Gray Level Run Length Matrix

2018 ◽  
Vol 6 (4) ◽  
pp. 146-151
Author(s):  
Endina Putri Purwandari ◽  
Rachmi Ulizah Hasibuan ◽  
Desi Andreswari

Bamboo species can be identified from the bamboo leaf images. This study conducted the identification of bamboo species based on leaf texture using Gray Level Co-occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRLM) for texture feature extraction, and Euclidean distance for measure the image distance. This study used the images of bamboo species in Bengkulu province, that are bambusa Vulgaris Var Vulgaris, bambusa Multiplex, bambusa Vulgaris Var Striata, Gigantochloa Robusta, Gigantochloa Schortrchinii, Gigantochloa Serik, Schizostachyum Brachycladum, and Dendrocalamus Asper. The bamboo application was built using Matlab. The accuracy of the application was 100% for bamboo leaf test images captured using a smartphone camera and 81.25% for test images downloaded from the Internet.

This paper proposes a content image retrieval using the texture and the color feature of the images. Although for extraction of texture feature, the “gray level co-occurrence matrix (GLCM) algorithm” is used and for extracting color feature the color histogram is used. The presented system is tested on the WANG database that contains a thousand color images with ten different classes by the help of three various type of distances


2011 ◽  
Vol 10 (3) ◽  
pp. 73-79 ◽  
Author(s):  
Jian Yang ◽  
Jingfeng Guo

Texture feature is a measure method about relationship among the pixels in local area, reflecting the changes of image space gray levels. This paper presents a texture feature extraction method based on regional average binary gray level difference co-occurrence matrix, which combined the texture structural analysis method with statistical method. Firstly, we calculate the average binary gray level difference of eight-neighbors of a pixel to get the average binary gray level difference image which expresses the variation pattern of the regional gray levels. Secondly, the regional co-occurrence matrix is constructed by using these average binary gray level differences. Finally, we extract the second-order statistic parameters reflecting the image texture feature from the regional co-occurrence matrix. Theoretical analysis and experimental results show that the image texture feature extraction method has certain accuracy and validity


Diagnostics ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 389
Author(s):  
Chih-Ling Huang ◽  
Meng-Jia Lian ◽  
Yi-Hsuan Wu ◽  
Wei-Ming Chen ◽  
Wen-Tai Chiu

Ovarian cancer is the most malignant of all gynecological cancers. A challenge that deteriorates with ovarian adenocarcinoma in neoplastic disease patients has been associated with the chemoresistance of cancer cells. Cisplatin (CP) belongs to the first-line chemotherapeutic agents and it would be beneficial to identify chemoresistance for ovarian adenocarcinoma cells, especially CP-resistance. Gray level co-occurrence matrix (GLCM) was characterized imaging from a numeric matrix and find its texture features. Serous type (OVCAR-4 and A2780), and clear cell type (IGROV1) ovarian carcinoma cell lines with CP-resistance were used to demonstrate GLCM texture feature extraction of images. Cells were cultured with cell density of 6 × 105 in a glass-bottom dish to form a uniform coverage of the glass slide to get the optical images by microscope and DVC camera. CP-resistant cells included OVCAR-4, A2780 and IGROV and had the higher contrast and entropy, lower energy, and homogeneity. Signal to noise ratio was used to evaluate the degree for chemoresistance of cell images based on GLCM texture feature extraction. The difference between wile type and CP-resistant cells was statistically significant in every case (p < 0.001). It is a promising model to achieve a rapid method with a more reliable diagnostic performance for identification of ovarian adenocarcinoma cells with CP-resistance by feature extraction of GLCM in vitro or ex vivo.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi142-vi142
Author(s):  
Kaylie Cullison ◽  
Garrett Simpson ◽  
Danilo Maziero ◽  
Kolton Jones ◽  
Radka Stoyanova ◽  
...  

Abstract A dilemma in treating glioblastoma is that MRI after chemotherapy and radiation therapy (chemoRT) shows areas of presumed tumor growth in up to 50% of patients. These areas can represent true progression (TP), tumor growth with tumors non-responsive to treatment, or pseudoprogression (PP), edema and tumor necrosis with favorable treatment response. On imaging, TP and PP are usually not discernable. Patients in this study undergo six weeks of chemoRT on a combination MRI/RT device, receiving daily MRIs. The goal of this study is to explore the correlation of radiomics features with progression. The tumor lesion and surrounding areas of growth/edema were manually outlined as regions of interest (ROIs) for each daily T2-weighted MRI scan. The ROIs were used to calculate texture features: statistical features based on the gray-level co-occurrence matrix (GLCM), the gray-level zone size matrix (GLZSM), the gray-level run length matrix (GLRLM), and the neighborhood gray-tone difference matrix (NGTDM). Each of these matrix classes describe the probability of spatial relationships of gray levels occurring within the ROI. Daily texture features were averaged per week of treatment for each patient. Patient response was retrospectively defined as no progression (NP), TP, or PP. A Kruskal-Wallis test was performed to identify texture features that correlated most strongly with patient response. Forty texture features were calculated for 12 patients (19 treated, 7 excluded due to no T2 lesion or progression status unknown, 6 NP, 3 TP, 3 PP). There was a trend of more texture features correlating significantly with response in weeks 4-6 of treatment, compared to weeks 1-3. A particular texture feature, GLSZM Small Zone Low Gray-Level Emphasis, showed increasing difference between PP and TP over time, with significant difference during week 6 of treatment (p=0.0495). Future directions include correlating early outcomes with greater numbers of patients and daily multiparametric MRI.


Sign in / Sign up

Export Citation Format

Share Document