High-order numerical simulations of broadband noise of turbulence-cascade interaction in aero-engines

Author(s):  
Wei Ying
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Rui Yuan ◽  
Yong Lv ◽  
Gangbing Song

Rolling bearings are vital components in rotary machinery, and their operating condition affects the entire mechanical systems. As one of the most important denoising methods for nonlinear systems, local projection (LP) denoising method can be used to reduce noise effectively. Afterwards, high-order polynomials are utilized to estimate the centroid of the neighborhood to better preserve complete geometry of attractors; thus, high-order local projection (HLP) can improve noise reduction performance. This paper proposed an adaptive high-order local projection (AHLP) denoising method in the field of fault diagnosis of rolling bearings to deal with different kinds of vibration signals of faulty rolling bearings. Optimal orders can be selected corresponding to vibration signals of outer ring fault (ORF) and inner ring fault (IRF) rolling bearings, because they have different nonlinear geometric structures. The vibration signal model of faulty rolling bearing is adopted in numerical simulations, and the characteristic frequencies of simulated signals can be well extracted by the proposed method. Furthermore, two kinds of experimental data have been processed in application researches, and fault frequencies of ORF and IRF rolling bearings can be both clearly extracted by the proposed method. The theoretical derivation, numerical simulations, and application research can indicate that the proposed novel approach is promising in the field of fault diagnosis of rolling bearing.


2018 ◽  
Vol 8 (10) ◽  
pp. 1923
Author(s):  
Martin Dannemann ◽  
Michael Kucher ◽  
Eckart Kunze ◽  
Niels Modler ◽  
Karsten Knobloch ◽  
...  

In aero engines, noise absorption is realised by acoustic liners, e.g., Helmholtz resonator (HR) liners, which often absorb sound only in a narrow frequency range. Due to developments of new engine generations, an improvement of overall acoustic damping performance and in particular more broadband noise absorption is required. In this paper, a new approach to increase the bandwidth of noise absorption for HR liners is presented. By replacing rigid cell walls in the liner’s honeycomb core structure by flexible polymer films, additional acoustic energy is dissipated. A manufacturing technology for square honeycomb cores with partially flexible walls is described. Samples with different flexible wall materials were fabricated and tested. The acoustic measurements show more broadband sound absorption compared to a reference liner with rigid walls due to acoustic-structural interaction. Manufacturing-related parameters are found to have a strong influence on the resulting vibration behaviour of the polymer films, and therefore on the acoustic performance. For future use, detailed investigations to ensure the liner segments compliance with technical, environmental, and life-cycle requirements are needed. However, the results of this study show the potential of this novel liner concept for noise reduction in future aero-engines.


Author(s):  
David P. Nicholls

The faithful modelling of the propagation of linear waves in a layered, periodic structure is of paramount importance in many branches of the applied sciences. In this paper, we present a novel numerical algorithm for the simulation of such problems which is free of the artificial singularities present in related approaches. We advocate for a surface integral formulation which is phrased in terms of impedance–impedance operators that are immune to the Dirichlet eigenvalues which plague the Dirichlet–Neumann operators that appear in classical formulations. We demonstrate a high-order spectral algorithm to simulate these latter operators based upon a high-order perturbation of surfaces methodology which is rapid, robust and highly accurate. We demonstrate the validity and utility of our approach with a sequence of numerical simulations.


Author(s):  
B. Franzelli ◽  
E. Riber ◽  
B. Cuenot ◽  
M. Ihme

Numerical simulations are regarded as an essential tool for improving the design of combustion systems since they can provide information that is complementary to experiments. However, although numerical simulations have already been successfully applied to the prediction of temperature and species concentration in turbulent flames, the production of soot is far from being conclusive due to the complexity of the processes involved in soot production. In this context, first Large Eddy Simulations (LES) of soot production in turbulent flames are reported in the literature in laboratory-scale configurations, thereby confirming the feasibility of the approach. However numerous modeling and numerical issues have not been completely solved. Moreover, validation of the models through comparisons with measurements in realistic complex flows typical of aero-engines is still rare. This work therefore proposes to evaluate the LES approach for the prediction of soot production in an experimental swirl-stabilized non-premixed ethylene/air aero-engine combustor, for which soot and flame data are available. Two simulations are carried out using a two-equation soot model to compare the performance of a hybrid chemical description (reduced chemistry for the flame structure/tabulated chemistry for soot precursor chemistry) to a classical full tabulation method. Discrepancies of soot concentration between the two LES calculations will be analyzed and the sensitivity to the chemical models will be investigated.


2003 ◽  
Vol 21 (3) ◽  
pp. 321-325 ◽  
Author(s):  
M. VANDENBOOMGAERDE ◽  
C. CHERFILS ◽  
D. GALMICHE ◽  
S. GAUTHIER ◽  
P.A. RAVIART

The simplified perturbation method of Vandenboomgaerdeet al.(2002) is applied to both the Richtmyer–Meshkov and the Rayleigh–Taylor instabilities. This theory is devoted to the calculus of the growth rate of the perturbation of the interface in the weakly nonlinear stage. In the standard approach, expansions appear to be series in time. We build accurate approximations by retaining only the terms with the highest power in time. This simplifies and accelerates the solution. High order expressions are then easily reachable. For the Richtmyer–Meshkov instability, multimode configurations become tractable and the selection mode process can be studied. Inferences for the intermediate nonlinear regime are also proposed. In particular, a class of homothetic configurations is inferred; its validity is verified with numerical simulations even as vortex structures appear at the interface. This kind of method can also be used for the Rayleigh–Taylor instability. Some examples are presented.


2011 ◽  
Vol 51 (1) ◽  
pp. 68-84 ◽  
Author(s):  
W. Medjroubi ◽  
B. Stoevesandt ◽  
B. Carmo ◽  
J. Peinke

Sign in / Sign up

Export Citation Format

Share Document