Optimization of the Friction Factor and Frictional Pressure Drop of R22 and R290

2016 ◽  
Vol 7 (2) ◽  
pp. 227 ◽  
Author(s):  
Normah Ghazali
Author(s):  
Yasuo Koizumi ◽  
Hiroyasu Ohtake ◽  
Hiroki Takahashi ◽  
Yoshiaki Ohno

The friction characteristics of water in a sub-millimeter scale channel were investigated experimentally. The friction factors and the critical Reynolds number were measured using water flow through circular tubes with diameters of 0.5, 0.25 and 0.17 mm. The experimental results show that the measured friction factor for water agreed well with the conventional Poiseuille (λ = 64/Re) and Blasius (λ = 0.316 Re−0.25) equations in laminar and turbulent flow regime; the laminar-turbulent transition Reynolds number was approximately 2300 for diameter 0.5 mm. For diameter 0.25 mm, the friction factor evaluated by the form pressure drop also agreed well with the Poiseuille equation. For diameter 0.17 mm, the measured total friction factor was close to the Poiseuille prediction.


2019 ◽  
Vol 27 (04) ◽  
pp. 1950037
Author(s):  
Qais Abid Yousif ◽  
Normah Mohd-Ghazali ◽  
Agus Sunjarianto Pamitran ◽  
Yushazaziah Mohd-Yunos

Accurate prediction of the friction factor and consequently the pressure drop of two-phase flow in small channels is still an issue. Many correlations exist for the determination of the viscosity and the friction factor that appear in the frictional pressure drop and their combination often determined the degree of disagreements between the experimental data and predicted outcomes. Demands for environmentally friendly refrigerants have further posed a challenge to find compatible alternatives with as good a performance as the current coolants. Despite the many available correlations developed to date, many more are studied in effort to reduce the discrepancies. This paper presents the outcomes of a study comparing the optimized conditions when three different viscosity equations are paired with eight different friction factor correlations to minimize the frictional pressure drop. The approach used multi-objective genetic algorithm (MOGA) to assist in selecting the best pairing. Comparison is then completed with available experimental data. The study showed that the Blasius friction factor paired with the Dukler viscosity produced the least percentage difference for R22, while when paired with the McAdams viscosity produced a lower difference for R290, an environmentally friendly refrigerant being considered to replace R22.


1987 ◽  
Vol 109 (4) ◽  
pp. 200-205 ◽  
Author(s):  
T. B. Jensen ◽  
M. P. Sharma

Published annular pressure drop field data have been compared with values predicted by the Bingham plastic and power law models. Several different equivalent diameter equations and friction factor correlations were utilized to estimate the frictional pressure gradients. The estimated frictional pressure drop gradients were then compared with the experimental gradients statistically to determine which combination of friction factor correlation and equivalent diameter equation predicted the experimental data best. Finally, new correlations for friction factors were developed. These new correlations predict the field data better than previously published correlations.


Author(s):  
B Shannak ◽  
R Damseh ◽  
M Al-Odat ◽  
M Al-Shannag ◽  
A Azzi

New measurements of the frictional pressure drop of air—water two-phase flow in a flexible corrugated U-tube have been carried out. Experiments were performed under the following conditions of two-phase parameters: mass flux of 300—800 kg/m2 s, gas quality of 1—60 per cent, and system pressure of 3—7 bar. The inner diameter of the U-tubes tested was 40 mm, with a ratio of curvature radius to inner diameter varying from 3 to 7.5. The results demonstrate that the two-phase flow resistance, energy dissipation, friction losses, and interaction of the two phases in flexible corrugated U-tubes are perceptible about two to five times greater than those in smooth U-tubes. Hence, the two-phase friction factor of such tubes increases from 0.65 to 1.4, depending on the influencing flow and geometrical parameters. The available correlations in the open literature present a similar trend and behaviour. However, they predict the data presented poorly because of the complex geometry of the flexible corrugated U-tube. Based on the energy balance and the presented experimental results, a new model has been developed to calculate the frictional two-phase pressure drop and hence the friction factor of the flexible U-tube. The model includes the relevant primary parameter, fits the experimental data well, and is sufficiently accurate for engineering purposes. The standard deviation of the data is less than 7 per cent. The reported results enable a practical design with standard products and optimization of the geometry of the flexible corrugated U-tube for specific conditions.


2016 ◽  
Vol 78 (6-11) ◽  
Author(s):  
Qais Abid Yousif ◽  
Normah Mohd-Ghazali ◽  
Nor Atiqah Zolpakar ◽  
Sentot Novianto ◽  
Agus Sujiantro Pamitran ◽  
...  

The major parameters of interest in heat transfer research are the refrigerant charge, pressure drop, and heat transfer capacity. Smaller channels reduce the refrigerant charge with higher heat transfer capability due to the increased in surface area to volume ratio but at the expense of a higher pressure drop. Differences between the predicted and experimental frictional pressure drop of two-phase flow in small tubes have frequently been discussed. Factors that could have contributed to that effect have been attributed to the correlations used to model the flow, some being modified from the originals developed for a macro system. Experimental test-rigs have varied in channel geometry, refrigerant type, and flow conditions. Thousands of data have been collected to find a common point among the differences. This paper reports an investigation of four different two-phase friction factor correlations used in the modeling of the frictional two-phase flow pressure drop of refrigerant R-22. One had been specifically developed for laminar flow in a smooth channel, another was modified from a laminar flow in a smooth pipe to be used for a rough channel, and two correlations are specific for turbulent flow that consider internal pipe surface roughness. Genetic algorithm, an optimization scheme, is used to search for the minimum friction factor and minimum frictional pressure drop under optimized conditions of the mass flux and vapor quality. The results show that a larger pressure drop does come with a smaller channel. A large discrepancy exists between the correlations investigated; between the ones that does not consider surface roughness and that which does, as well as between flow under laminar and turbulent flow conditions.


2021 ◽  
Author(s):  
Baihui Jiang ◽  
Zhiwei Zhou ◽  
Yu Ji

Abstract With compact structure and enhanced heat transfer capacity, helical-coiled once through steam generators (HTSGs) are widely used in the small modular reactors (SMRs). Nevertheless, the inside centrifugal forces make the flow more complicated, and increase the frictional pressure drop, which is closely related to the dual test of alternating thermal stress and flow instability. Therefore, the analysis of the friction factor in helically coiled tubes is significant to the efficient and safe operation of HTSGs. While the friction factor of single-phase flow in helically coiled tubes was fully studied and extensive correlations have been validated by a large amount of experimental data, the friction factor of two-phase flow still lacks feasible prediction due to its much more complexity. The existed correlations of two-phase flow in helically coiled tubes are mostly based on specified experimental parameters, so the applicable range is limited. Few scholars have tried to extend these correlations to broader applicability, but the trivial applicable range is unsuitable for program development or engineering design, which needs an accurate prediction of friction factor in a wider range. In this paper, existing frictional pressure drop correlations are investigated. The accuracy of single-phase frictional pressure drop correlations is verified through the comparison of calculation results. Since the known experimental data cannot cover a wide range of parameters, two assumptions are proposed, and the rationality is verified through the existing experimental data and calculation analysis. Based on the two assumptions and calculation, a set of calculation correlations for frictional pressure drop of two-phase flow in helically coiled tubes are proposed. The accuracy of this calculation model is validated by experimental data. The scope of application of this model is: D / d = 15–100, P = 0.12–6.3MPa, G = 200–1500kg / m2s, which is sufficient to support the design and operation of steam generators and the development of the simulation programs.


Author(s):  
Neville Joaquim Rebelo ◽  
Parthasarathi Ghosh

Supercritical helium owing to its single-phase characteristics and enhanced heat transfer near the pseudo-critical region is envisaged as a potential coolant for superconducting magnets used in particle accelerators and fusion devices. However, near the transposed critical line, there is a wide fluctuation of thermophysical properties like specific heat at constant pressure, density, thermal conductivity, viscosity, etc. As a consequence of this fluctuation, heat transfer and fluid flow studies become difficult for accurate prediction of heat transfer coefficient and friction factor. In this paper, numerical simulation of supercritical helium flowing under turbulent conditions in a horizontal heated tube is performed using computational fluid dynamics (CFD) software ANSYS FLUENT v12.0.16. It is found that results of pressure drop obtained from simulation closely match experimental data in case of fluctuation free regimes. The friction factor indicating the frictional pressure drop occurring in a horizontal tube can be matched to existing correlations within given accuracies for fluctuation regimes. A correlation for friction factor that yields better results than those in literature is proposed based on the simulation data obtained. The accurate determination of the overall pressure drop in the tubes along with the optimum flow rates gives the estimation of pumping power required for enhanced heat transfer with flow of supercritical helium.


2016 ◽  
Vol 819 ◽  
pp. 309-313
Author(s):  
Normah Mohd Ghazali ◽  
Agus Sunjarianto Pamitran ◽  
Oh Jong-Taek ◽  
Robiah Ahmad ◽  
Muhammad Khairul Fitkry Rabin

Substantial research has been completed with more on-going on the flow pattern and heat transfer associated with two-phase flows. Discrepancies reported may have been as much as agreements, due to the different models, approaches, flow regimes, correlations, and new working fluids being utilized. This paper reports the outcome of a study to look at the effects of applying two different friction factor correlations on the simultaneous minimization of the pressure drop and Martinelli parameter under optimized flow rate and vapor quality, using genetic algorithm. The homogeneous model is assumed with ammonia as the working fluid, the coolant being environmentally friendly and having recently discovered as a potential replacement for the current refrigerants in micro and mini-channels. Results show that significant differences in the frictional pressure drop and Martinelli parameter arise due to the different correlations used, and this is only the outcome from two different correlations currently being considered by researchers in pressure drop analysis for two-phase flows in mini-channels. Thus, absolute agreement is indeed not possible between theoretical, experimental, and numerical work in view of the many different available correlations being utilized today with differences between 10 to 100 percent that has already been established.


2016 ◽  
Vol 78 (10-2) ◽  
Author(s):  
Qais Abid Yousif ◽  
Normah Mohd-Ghazali ◽  
Agus Sunjarianto Pamitran

Predictions of the frictional pressure drop using friction factor correlations that have been developed based on past experimental data have always been found to disagree with recent experimental data. Thus, new correlations are continuously being developed to generalize their applications across refrigerants and flow regimes. The friction factor is dependent on the Reynolds number and relative roughness, therefore consequently depends on the applied equation and fluid data. This research shows the outcome of the analysis of the frictional pressure drop prediction when different data source as well as different friction factor equations for smooth and rough pipes are utilized. The R-22 data used for comparison are experimental data from a past report, NIST (Standard Reference Database), and experimental data from University of Indonesia. The used e friction factor equations are Blasius and Fang et al. (2011) in smooth and rough pipe respectively. The mass flux is ranging from 200 to 600 kg/m2s and vapor quality from 0.0001 to 0.5, the latter of which is assumed constant along the pipe length of 2000 mm at the saturation temperature of 10°C. The pipe material is stainless steel with an absolute roughness of 0.03 mm. The minimization of the friction factor and two-phase flow frictional pressure drop is achieved by applying Genetic Algorithm (GA). The comparisons reveal that the differences are an indication of the appropriate data source necessary so that the frictional pressure drop can be accurately predicted. The results showed that in 1.5 mm pipe diameter, the Blasius equation gives the lower percentage of differences in the range of 0.69 – 1.47 % when the data from NIST and UI are used. While the lower percentage of differences gives Fang et al. (2011) equation in the range of 1.47 – 2.61% when data from Pamitran et al. (2010) and UI are used. In the 3 mm inner diameter, also Blasius equation gives the lower percentage of differences in the range of 0.89 – 2.52% when the data from Pamitran et al. (2010) and UI are used. While Fang et al. (2011) gives the lower percentage of differences in the range of 1.56 – 1.33% when the data from Pamitran et al. (2010) and UI are used. The proposed method is predictable to raise the accuracy of the prediction and decrease the time of testing. The results are compared between each other’s for different data sources. For most situations, the percentage difference, as well as for laminar and turbulent flows are between 91 – 97% and 88 – 95% in 1.5 and 3 mm pipe diameter respectively.


Sign in / Sign up

Export Citation Format

Share Document