scholarly journals Transforming Seismic Data into Lateral Sonic Properties using Artificial Neural Network: A Case Study of Real Data Set

2018 ◽  
Vol 9 (3) ◽  
pp. 472 ◽  
Author(s):  
Abdul Haris ◽  
Befriko Murdianto ◽  
Rochmad Susattyo ◽  
Agus Riyanto
2016 ◽  
Vol 78 (12-2) ◽  
Author(s):  
Norma Alias ◽  
Husna Mohamad Mohsin ◽  
Maizatul Nadirah Mustaffa ◽  
Siti Hafilah Mohd Saimi ◽  
Ridhwan Reyaz

Eye movement behaviour is related to human brain activation either during asleep or awake. The aim of this paper is to measure the three types of eye movement by using the data classification of electroencephalogram (EEG) signals. It will be illustrated and train using the artificial neural network (ANN) method, in which the measurement of eye movement is based on eye blinks close and open, moves to the left and right as well as eye movement upwards and downwards. The integrated of ANN with EEG digital data signals is to train the large-scale digital data and thus predict the eye movement behaviour with stress activity. Since this study is using large-scale digital data, the parallelization of integrated ANN with EEG signals has been implemented on Compute Unified Device Architecture (CUDA) supported by heterogeneous CPU-GPU systems. The real data set from eye therapy industry, IC Herbz Sdn Bhd was carried out in order to validate and simulate the eye movement behaviour. Parallel performance analyses can be captured based on execution time, speedup, efficiency, and computational complexity.


Author(s):  
Gasser E. Hassan ◽  
Mohamed A. Ali

The most sustainable source of energy with unlimited reserves is the solar energy, which is the main source of all types of energy on earth. Accurate knowledge of solar radiation is considered to be the first step in solar energy availability assessment. It is also the primary input for various solar energy applications. The unavailability of the solar radiation measurements for several sites around the world leads to proposing different models for predicting the global solar radiation. Artificial neural network technique is considered to be an effective tool for modelling nonlinear systems and requires fewer input parameters. This work aims to investigate the performance of artificial neural network-based models in estimating global solar radiation. To achieve this goal, measured data set of global solar radiation for the case study location (Lat. 30˚ 51 ̀ N and long. 29˚ 34 ̀ E) are utilized for model establishment and validation. Mostly, common statistical indicators are employed for evaluating the performance of these models and recognizing the best model. The obtained results show that the artificial neural network models demonstrate promising performance in the prediction of global solar radiation. In addition, the proposed models provide superior consistency between the measured and estimated values.


2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 766
Author(s):  
Rashad A. R. Bantan ◽  
Ramadan A. Zeineldin ◽  
Farrukh Jamal ◽  
Christophe Chesneau

Deanship of scientific research established by the King Abdulaziz University provides some research programs for its staff and researchers and encourages them to submit proposals in this regard. Distinct research study (DRS) is one of these programs. It is available all the year and the King Abdulaziz University (KAU) staff can submit more than one proposal at the same time up to three proposals. The rules of the DSR program are simple and easy so it contributes in increasing the international rank of KAU. The authors are offered financial and moral reward after publishing articles from these proposals in Thomson-ISI journals. In this paper, multiplayer perceptron (MLP) artificial neural network (ANN) is employed to determine the factors that have more effect on the number of ISI published articles. The proposed study used real data of the finished projects from 2011 to April 2019.


Author(s):  
Komsan Wongkalasin ◽  
Teerapon Upachaban ◽  
Wacharawish Daosawang ◽  
Nattadon Pannucharoenwong ◽  
Phadungsak Ratanadecho

This research aims to enhance the watermelon’s quality selection process, which was traditionally conducted by knocking the watermelon fruit and sort out by the sound’s character. The proposed method in this research is generating the sound spectrum through the watermelon and then analyzes the response signal’s frequency and the amplitude by Fast Fourier Transform (FFT). Then the obtained data were used to train and verify the neural network processor. The result shows that, the frequencies of 129 and 172 Hz were suit to be used in the comparison. Thirty watermelons, which were randomly selected from the orchard, were used to create a data set, and then were cut to manually check and match to the fruits’ quality. The 129 Hz frequency gave the response ranging from 13.57 and above in 3 groups of watermelons quality, including, not fully ripened, fully ripened, and close to rotten watermelons. When the 172 Hz gave the response between 11.11–12.72 in not fully ripened watermelons and those of 13.00 or more in the group of close to rotten and hollow watermelons. The response was then used as a training condition for the artificial neural network processor of the sorting machine prototype. The verification results provided a reasonable prediction of the ripeness level of watermelon and can be used as a pilot prototype to improve the efficiency of the tools to obtain a modern-watermelon quality selection tool, which could enhance the competitiveness of the local farmers on the product quality control.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Hari P. N. Nagarajan ◽  
Hossein Mokhtarian ◽  
Hesam Jafarian ◽  
Saoussen Dimassi ◽  
Shahriar Bakrani-Balani ◽  
...  

Additive manufacturing (AM) continues to rise in popularity due to its various advantages over traditional manufacturing processes. AM interests industry, but achieving repeatable production quality remains problematic for many AM technologies. Thus, modeling different process variables in AM using machine learning can be highly beneficial in creating useful knowledge of the process. Such developed artificial neural network (ANN) models would aid designers and manufacturers to make informed decisions about their products and processes. However, it is challenging to define an appropriate ANN topology that captures the AM system behavior. Toward that goal, an approach combining dimensional analysis conceptual modeling (DACM) and classical ANNs is proposed to create a new type of knowledge-based ANN (KB-ANN). This approach integrates existing literature and expert knowledge of the AM process to define a topology for the KB-ANN model. The proposed KB-ANN is a hybrid learning network that encompasses topological zones derived from knowledge of the process and other zones where missing knowledge is modeled using classical ANNs. The usefulness of the method is demonstrated using a case study to model wall thickness, part height, and total part mass in a fused deposition modeling (FDM) process. The KB-ANN-based model for FDM has the same performance with better generalization capabilities using fewer weights trained, when compared to a classical ANN.


Sign in / Sign up

Export Citation Format

Share Document