scholarly journals Response of onion crop to bulb set size and planting date under mulching in dry Mediterranean environment

2021 ◽  
Vol 117 (3) ◽  
pp. 1
Author(s):  
Ibrahim MUBARAK

<p class="042abstractstekst">The present pot experiment under open field conditions was conducted to evaluate the response of onion crop to bulb set size and planting date using mulching. Two different sizes of onion sets at planting (large (6-10 g) and small (2-6 g)) and three different planting dates (February, March, and April) with two soil coverings (with and without straw mulching) were tested. Treatments were replicated three times. Onion was not exposed to any drought stress during the course of the experiment.<br />Results indicated that the larger bulb sets which were planted earlier under mulching, maximised the total bulb yield (Yield, 44.0 t ha<sup>-1</sup>), water use efficiency (WUE, 8.37 kg m<sup>-3</sup>), and irrigation water use efficiency (IWUE, 9.57 kg m<sup>-3</sup>). Moreover, findings revealed that onion crop appreciably respond to smaller bulb sets when they were planted earlier under mulching. Onion bulb responses were predicted to be linearly increased with the earliness in planting date, with an obvious better preference under mulching and heavier bulb sets. Hence, adopting early planting date with mulching is suggested for sustainable crop production and for enhancing water use efficiency in dry Mediterranean area.</p>

Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1637 ◽  
Author(s):  
Yubing Fan ◽  
Raymond Massey ◽  
Seong Park

In an irrigated multi-crop production system, farmers make decisions on the land allocated to each crop, and the subsequent irrigation water application, which determines the crop yield and irrigation water use efficiency. This study analyzes the effects of the multiple factors on farmers’ decision making and economic irrigation water use efficiency (EIWUE) using a national dataset from the USDA Farm and Ranch Irrigation Survey. To better deal with the farm-level data embedded in each state of the U.S., multilevel models are employed, which permit the incorporation of state-level variables in addition to the farm-level factors. The results show higher costs of surface water are not effective in reducing water use, while groundwater costs show a positive association with water use on both corn and soybean farms. The adoption of pressure irrigation systems reduces the soybean water use and increases the soybean yield. A higher EIWUE can be achieved with the adoption of enhanced irrigation systems on both corn and soybean farms. A high temperature promotes more the efficient water use and higher yield, and a high precipitation is associated with lower water application and higher crop yield. Intraclass correlation coefficients (ICC) suggest a moderate variability in water application and EIWUE is accounted by the state-level factors with ICC values greater than 0.10.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Ikram Ullah ◽  
Hanping Mao ◽  
Ghulam Rasool ◽  
Hongyan Gao ◽  
Qaiser Javed ◽  
...  

This study was conducted to investigate the effects of various irrigation water (W) and nitrogen (N) levels on growth, root-shoot morphology, yield, and irrigation water use efficiency of greenhouse tomatoes in spring–summer and fall–winter. The experiment consisted of three irrigation water levels (W: 100% of crop evapotranspiration (ETc), 80%, and 60% of full irrigation) and three N application levels (N: 100%, 75%, and 50% of the standard nitrogen concentration in Hoagland’s solution treatments equivalent to 15, 11.25, 7.5 mM). All the growth parameters of tomato significantly decreased (p < 0.05) with the decrease in the amount of irrigation and nitrogen application. Results depicted that a slight decrease in irrigation and an increase in N supply improved average root diameter, total root length, and root surface area, while the interaction was observed non-significant at average diameter of roots. Compared to the control, W80 N100 was statistically non-significant in photosynthesis and stomatal conductance. The W80 N100 resulted in a yield decrease of 2.90% and 8.75% but increased irrigation water use efficiency (IWUE) by 21.40% and 14.06%. Among interactions, the reduction in a single factor at W80 N100 and W100 N75 compensated the growth and yield. Hence, W80 N100 was found to be optimal regarding yield and IWUE, with 80% of irrigation water and 15 mM of N fertilization for soilless tomato production in greenhouses.


2019 ◽  
Vol 20 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Liu Dong ◽  
Zhou Lihui ◽  
Li Heng ◽  
Fu Qiang ◽  
Li Mo ◽  
...  

Abstract The evaluation of irrigation water efficiency plays an important role in the efficient use of agricultural water resources and the sustainable development of agriculture. In order to make the evaluation of irrigation water use efficiency indicators more comprehensive and scientific, this paper constructs a new optimal model of evaluation indicators. By combining the Driver-Pressure-State-Impact-Response (DPSIR) model with the Information Significance Difference (ISD) evaluation indicators model, a novel DPSIR-ISD evaluation indicators combination model was constructed. Ten riverside irrigation areas in the Sanjiang Plain of northeastern China were selected for analysis. The results show that the DPSIR-ISD model was used to reduce the number of indicators from 44 to 14; these 14 indicators reflected 91.88% of the original information. The DPSIR-ISD method proposed in this paper takes into account the completeness and simplicity of the indicators system, and is more in line with the actual situation in the field. These results can provide a simpler and more convenient system for optimizing indicators for the study of evaluation indicators used to analyze irrigation water use efficiency.


Sign in / Sign up

Export Citation Format

Share Document