scholarly journals STEP-NC-compliant High Efficient Machining Simulation

Author(s):  
Xian Cao ◽  
Wenlei Xiao ◽  
Gang Zhao
2011 ◽  
Vol 305 ◽  
pp. 202-209 ◽  
Author(s):  
Zi Hua Hu ◽  
Jie Mei Liu ◽  
Zheng Kuang ◽  
Liang Tang

Current methods for measuring Globoidal cam exist these problems: difficulty of measurement of profile machining error, heavy dependency on expensive measuring equipment and low measuring efficiency. In order to solve them, this paper established a high efficient virtual measuring method for globoidal cam machining errors. Based on virtual measuring theory and globoidal cam space engagement theory, and by taking the three-dimensional machining simulation models of the globoidal cam profile as the measured object, the virtual gauge head can do measurement along the planned measuring path. The machining error calculation method was determined according to the degree of geometric interference between virtual gauge head and the surface of machined models. And a virtual measuring system on UG platform for globoidal cam profile machining errors was built by use of Visual C++ 6.0 and UG/Open API secondary development tools. Finally, a virtual measuring experiment was performed for the two kind of machining simulation models generated by generating method and one-side machining method. The experimental results show that the high efficient virtual measuring method for globoidal cam machining error is correct and the virtual measuring system is reliable. On the one hand, an effective method is provided to achieve an efficient, low-cost measurement for globoidal cam profile machining errors in this paper. On the other hand, it has great engineering guiding significance for the actual production and processing of globoidal cam.


2019 ◽  
Vol 106 (5-6) ◽  
pp. 2363-2375 ◽  
Author(s):  
Gang Zhao ◽  
Xian Cao ◽  
Wenlei Xiao ◽  
Qiang Liu ◽  
Martin Byung-Guk Jun

Vestnik MEI ◽  
2018 ◽  
Vol 6 (6) ◽  
pp. 33-42
Author(s):  
Pavel V. Roslyakov ◽  
◽  
Bronislav G. Grisha ◽  
Igor L. Ionkin ◽  
Mikhail N. Zaichenko ◽  
...  

2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p></p><p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (430.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~81.2% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p><br><p></p>


2018 ◽  
Author(s):  
Riva Alkarsifi ◽  
Florent Pourcin ◽  
Pavlo Perkhun ◽  
Mats Fahlman ◽  
Christine Videlot-Ackermann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document