scholarly journals Bone Marrow Findings of Immune-Mediated Pure Red Cell Aplasia Following Anti-Programmed Cell Death Receptor-1 Therapy: A Report of Two Cases and Review of Literature

2019 ◽  
Vol 8 (2) ◽  
pp. 71-78 ◽  
Author(s):  
Le Le Aye ◽  
James B. Harris ◽  
Imran Siddiqi ◽  
Ashley Hagiya
2020 ◽  
pp. 5336-5348
Author(s):  
Judith C.W. Marsh ◽  
Shreyans Gandhi ◽  
Ghulam J. Mufti

Aplastic anaemia (AA) is a rare bone marrow failure (BMF) disorder characterized by pancytopenia and a hypocellular bone marrow. AA is commonly acquired, immune mediated, and idiopathic in nature. Activated autoreactive, cytotoxic CD8+ T cells are present but recent work has shown that CD4+ T cells appear to be more important in the pathogenesis of acquired AA. The immune nature of acquired AA provides the rationale for one of the treatment options, namely immunosuppressive therapy. First-line treatment of acquired AA is either immunosuppressive therapy with antithymocyte globulin and ciclosporin or allogeneic haematopoietic stem cell transplantation (HSCT). Both modalities offer excellent survival. Patients treated with immunosuppressive therapy are at later risk of relapse and clonal evolution to myelodysplastic syndrome and acute myeloid leukaemia, so require long-term follow-up. HSCT, if successful, is curative, but risks include graft rejection, infections, and graft-versus-host disease (GVHD); recent changes to the transplant conditioning regimen have reduced the GVHD risk. The inherited forms of AA include Fanconi’s anaemia, a disorder of DNA repair, dyskeratosis congenita, a disorder of telomere maintenance, and Shwachman–Diamond syndrome, one of the so-called ribosomopathies characterized by defective ribosomal biogenesis. Pure red cell aplasia (PRCA) is a form of BMF characterized by severe anaemia with reticulocytopenia and reduced erythroid progenitors in the bone marrow. PRCA most commonly is an acquired disorder and immune mediated, and often occurs in association with a wide range of conditions. Diamond–Blackfan anaemia, an inherited form of PRCA, is another example of a ribosomopathy, and is caused by mutations in one of many ribosomal protein genes, resulting in haploinsufficiency.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2195-2195
Author(s):  
Nicholas C.J. Lee ◽  
Bhavisha A. Patel ◽  
Taha Bat ◽  
Ibrahim F. Ibrahim ◽  
Madhuri Vusirikala ◽  
...  

Abstract Introduction: Aplastic anemia (AA) is a life-threatening disorder characterized by pancytopenia and a hypocellular bone marrow. Pure red cell aplasia (PRCA) is a similar disorder with primary reduction in the red blood cell population and virtual absence of erythroid precursors in the bone marrow. While the etiology of immune mediated marrow failure is multifactorial, preceding viral infections have been associated with the disease; these include parvovirus B19, cytomegalovirus, and Epstein-Barr virus. We present four cases of immune mediated marrow failure with either preceding or simultaneous SARS-CoV-2 infection. Methods: The medical records of patients treated for AA or PRCA at the University of Texas Southwestern Medical Center, Parkland Hospital, and the National Institutes of Health (NIH) were reviewed for SARS-CoV-2 infection. Four patients without prior hematological diseases were identified who had SARS-CoV-2 infection prior to or with simultaneous the diagnosis of AA or PRCA. Results: Patient #1 was a 22-year-old white female who was diagnosed with asymptomatic COVID-19 10 days prior to her pancytopenia and AA diagnosis was confirmed by bone marrow biopsy (5% cellularity; Table 1). Her extensive work-up including HIV, hepatitis panel, immunoglobulins, B12 and folate was negative, and she underwent HLA-matched family donor hematopoietic stem cell transplant. Patient #2 was a 69-year-old Asian female who presented to her primary care physician with symptoms of fatigue and was found to be pancytopenic. CBC from a few months prior was completely normal. Further work-up was positive for COVID-19 and negative for HIV, nutritional deficiency, or hemolysis. She did not have respiratory symptoms, was eventually diagnosed with pRBC and platelet transfusion-dependent severe AA (5-10% cellularity on bone marrow), and underwent treatment with cyclosporine, equine antithymocyte globulin, and eltrombopag. She has had a partial response to this therapy. Both patients had bone marrow specimens stained for SARS-CoV-2 by immunohistochemistry that were negative. Patient #3 was a 76-year-old white male who was diagnosed with COVID-19 4 months prior to presenting with a non-ST segment myocardial infarction and found to be profoundly anemic, requiring pRBC transfusion. He re-presented with chest pain one week later and was found to be anemic again, and required transfusion. A trial of darbepoetin alfa was unsuccessful. Extensive work-up for malignancy, infection, and autoimmune etiologies were negative. He was diagnosed with PRCA based on the bone marrow biopsy and initiated treatment with cyclosporine. Patient # 4 was diagnosed with severe AA (presenting as pancytopenia) and COVID-19 infection. He had fatigue for one month and fever, chills and sore throat one-week prior seeking medical care. Testing for hepatitis, HIV, EBV, and CMV was negative. He was treated on a clinical trial (NCT04304820) at NIH with cyclosporine and eltrombopag until SARS-CoV-2 PCR was negative then received equine anti-thymocyte globulin. He has achieved a complete hematologic response at 6 months and remains well at last follow-up. Conclusion: The four patients described had minimal respiratory COVID-19 symptoms, but they presented with cytopenia and were eventually diagnosed with bone marrow failure. It is possible that this is co-incidental due to the high prevalence of SARS-CoV-2. However, there is emerging evidence that COVID-19 pneumonia is a hyperinflammatory and immune dysregulated state improved by dexamethasone therapy. Other immune mediated hematologic conditions, such as autoimmune hemolytic anemia and immune thrombocytopenia, have been reported. The onset from infection to cytopenia appears rapid, although patients often presented with symptoms for many days prior to diagnosis and thus testing may have been delayed from the onset of infection. This case series does not provide a mechanistic link between SARS-CoV-2 infection and bone marrow failure, but it raises the possibility that SARS-CoV-2 may mediate an immunologic response that contributes to marrow failure. Patients appear to respond well to standard immunosuppressive treatment. Further cases and studies are needed to determine if this is directly linked to SARS-CoV-2 and whether the natural history and response to standard therapy is different than idiopathic cases. Figure 1 Figure 1. Disclosures Young: Novartis: Research Funding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naohito Fujishima ◽  
Junki Kohmaru ◽  
Souichi Koyota ◽  
Keiji Kuba ◽  
Tomoo Saga ◽  
...  

AbstractIdiopathic pure red cell aplasia (PRCA) and secondary PRCA associated with thymoma and large granular lymphocyte leukemia are generally considered to be immune-mediated. The PRCA2004/2006 study showed that poor responses to immunosuppression and anemia relapse were associated with death. PRCA may represent the prodrome to MDS. Thus, clonal hematopoiesis may be responsible for treatment failure. We investigated gene mutations in myeloid neoplasm-associated genes in acquired PRCA. We identified 21 mutations affecting amino acid sequences in 11 of the 38 adult PRCA patients (28.9%) using stringent filtering of the error-prone sequences and SNPs. Four PRCA patients showed 7 driver mutations in TET2, DNMT3A and KDM6A, and 2 PRCA patients carried multiple mutations in TET2. Five PRCA patients had mutations with high VAFs exceeding 0.3. These results suggest that clonal hematopoiesis by stem/progenitor cells might be related to the pathophysiology of chronic PRCA in certain adult patients.


2021 ◽  
pp. 55-56
Author(s):  
G Srivani ◽  
D Roja Aishwarya ◽  
P. V. S. Kiran

Pure cell aplasia is a rare bone marrow failure that affects erythroid lineage characterized by normocytic normochromic anemia with reticulocytopenia in the peripheral blood and absent or infrequent erythroblasts in the bone marrow. It can be congenital or acquired. Acquired can be primary when no cause is identied or secondary-due to underlying or associated pathology. Herein we report a case of a 28 year old female with Primary Acquired Pure Red cell aplasia. The patient presented with severe anemia (Hb-1.9gm%) and low reticulocyte count 0.1%. Bone marrow aspiration shows normocellular marrow with Decreased erythropoiesis with M:E ratio of 20:1..Patient was started on oral prednisolone and improvement was seen and the patient became transfusion independent.


2017 ◽  
Author(s):  
Nancy Berliner ◽  
John M Gansner

This review focuses on anemia resulting from production defects generally associated with marrow aplasia or replacement. The definition, epidemiology, etiology, pathogenesis, diagnosis, differential diagnosis, management, complications, and prognosis of the following production defects are discussed: Acquired aplastic anemia and acquired pure red cell aplasia. Figures depict a leukoerythroblastic blood smear, a biopsy comparing normal bone marrow and bone marrow showing almost complete aplasia, and a marrow smear. A table lists the causes of aplastic anemia. This review contains 3 figures; 1 table; 108 references.


2012 ◽  
Vol 52 (186) ◽  
Author(s):  
A Baral ◽  
B Poudel ◽  
R K Agrawal ◽  
R Hada ◽  
S Gurung

Parvo B19 is a single stranded DNA virus, which typically has affi nity for erythroid progenitor cells in the bone marrow and produces a severe form of anemia known as pure red cell aplasia. This condition is particularly worse in immunocompromised individuals. We herein report a young Nepali male who developed severe and persistent anaemia after kidney transplantation while being on immunosuppressive therapy. His bone marrow examination revealed morphological changes of pure red cell aplasia, caused by parvovirus B19. The IgM antibody against the virus was positive and the virus was detected by polymerase chain reaction in the blood. He was managed with intravenous immunoglobulin. He responded well to the treatment and has normal hemoglobin levels three months post treatment. To the best of our knowledge, this is the fi rst such case report from Nepal. Keywords: Intravenous immunoglobulin, kidney transplant recipient, Parvovirus B19, pure red cell aplasia.


Sign in / Sign up

Export Citation Format

Share Document