scholarly journals The Clinical Use of Stem Cell Research in Chronic Obstructive Pulmonary Disease: A Critical Analysis of Current Policies

2018 ◽  
Vol 10 (9) ◽  
pp. 671-678 ◽  
Author(s):  
Domenico Maurizio Toraldo ◽  
Sara Toraldo ◽  
Luana Conte
2020 ◽  
Author(s):  
Noridzzaida Ridzuan ◽  
Norashikin Zakaria ◽  
Darius Widera ◽  
Jonathan Sheard ◽  
Mitsuru Morimoto ◽  
...  

Abstract Background: Chronic obstructive pulmonary disease (COPD) is an incurable and debilitating chronic disease characterized by progressive airflow limitation associated with abnormal levels of tissue inflammation. Therefore, stem cell-based approaches to tackle the condition are currently a focus of regenerative therapies for COPD. Extracellular vesicles (EVs) released by all cell types are crucially involved in paracrine, extracellular communication. Recent advances in the field suggest that stem cell-derived EVs possess a therapeutic potential which is comparable to the cells of their origin.Methods: In this study, we assessed the potential anti-inflammatory effects of human umbilical cord mesenchymal stem cell (hUC-MSCs) derived EVs in a rat model of COPD. EVs were isolated from hUC-MSCs and characterized by the transmission electron microscope, western blotting, and nanoparticle tracking analysis. As a model of COPD, male Sprague Dawley rats were exposed to cigarette smoke for up to 12 weeks, followed by transplantation of hUC-MSCs or application of hUC-MSCs-derived EVs. Lung tissue was subjected to histological analysis using hematoxylin and eosin staining, alcian blue-periodic acid Schiff (AB-PAS) staining, and immunofluorescence staining. Gene expression in the lung tissue was assessed using microarray analysis. Statistical analyses were performed using GraphPad Prism 7 version 7.0 (GraphPad Software, USA). Student’s t-test was used to compare between 2 groups. Comparison among more than 2 groups was done using one-way analysis of variance (ANOVA). Data presented as median±standard deviation (SD).Results: Both, transplantation of hUC-MSCs and application of EVs resulted in a reduction of peribronchial and perivascular inflammation, alveolar septal thickening associated with mononuclear inflammation, as well as a decreased number of goblet cells. Moreover, hUC-MSCs and EVs ameliorated the loss of alveolar septa in the emphysematous lung of COPD rats and reduced the levels of NF-κB subunit p65 in the tissue. Subsequent microarray analysis revealed that both hUC-MSCs and EVs significantly regulate multiple pathways known to be associated with COPD. Conclusions: In conclusion, we show that hUC-MSCs-derived EVs effectively ameliorate by COPD-induced inflammation. Thus, EVs could serve as a new cell-free based therapy for the treatment of COPD.


2019 ◽  
Author(s):  
Pierre de la Grange ◽  
Ariane Jolly ◽  
Charlotte Courageux ◽  
Chamseddine Ben Brahim ◽  
Pascale LEROY

Abstract Objectives: Patients with Chronic Obstructive Pulmonary Disease (COPD) have a bronchial epithelium with many anomalies and basal/progenitor cells showing a decrease of self-renewal and differentiation potential. The objective of this study was to identify deregulations in the genetic program of COPD bronchial progenitors that could account for their exhaustion. The transcription factor Slug/Snail2 is highly expressed in bronchial progenitors and we aimed at identifying genes downstream of Slug whose expression is deregulated in COPD progenitors. Results: We knocked down Slug in primary basal cells from COPD subjects and, since COPD subjects have higher levels of Transforming Growth Factor (TGF)-β Slug is regulated by TGF-β, we selected genes downstream of Slug involved in differentiation that respond to TGF-β. We identified transcription factors involved in stem cell maintenance downstream of Slug and repressed by TGF-β in COPD but not normal progenitors. We found that the effect of TGF-β on the expression of these genes is correlated to Slug knockdown effect. We also found a correlation between the mRNA levels of Slug and these genes only in presence of TGF-β. These results reveal that stem cell maintenance genes are deregulated in COPD bronchial progenitors, Slug and TGF-β being involved in that deregulation.


Sign in / Sign up

Export Citation Format

Share Document