scholarly journals A Gating System Design to Reduce the Gas Porosity for Die Casting Mobile Device

Author(s):  
Jeong Hui Jang ◽  
◽  
Jun Hyung Kim ◽  
Chul Ho Han
Author(s):  
Vijay Kumar ◽  
Jatinder Madan

The gating system design for a die-casting die is a non-trivial task that involves a number of steps and computations, in which many factors related to part design, material, and process need to be accounted. In case of a multi-cavity die-casting die, the non-triviality of the gating system design increases manifold. The main contribution of this article is to develop a computer-aided system for design of gating system for multi-cavity die-casting dies. The proposed system applies design knowledge and rules, accounting for various influencing factors to design gating system elements and generate their computer-aided design models in an efficient manner. To demonstrate the capabilities of the developed system, the results for an industrial case study part are presented. We expect that the proposed system would help reduce manufacturing cost and lead time, alongside bridging gaps between design and manufacturing of the die-casting process.


2016 ◽  
Vol 256 ◽  
pp. 334-339 ◽  
Author(s):  
Song Chen ◽  
Fan Zhang ◽  
You Feng He ◽  
Da Quan Li ◽  
Qiang Zhu

Semi-solid slurry has significantly higher viscosity than liquid metal. This character of fluidity makes product design and die design, such as gating system, overflow and venting system, be different between these two die casting processes. In the present paper, taking a clamp product as an example, analyses the product optimization and die design by comparing the experimental and computational numerical simulation results. For the clamp, product structure is designed to be suitable for characters of SSM die casting process. The gating system is designed to be uniform variation of thickness, making the cross-sectional area uniformly reduce from the biscuit to the gate. This design ensures semi-solid metal slurry to fill die cavity from thick wall to thin wall. Gate position is designed at the thickest location, the gate shape of semi-solid die casting is set to be much bigger than traditional liquid casting. A good filling behaviour can be achieved by aforementioned all these design principles and it will be helpful to the intensification of pressure feeding after filling.


Sign in / Sign up

Export Citation Format

Share Document