scholarly journals Indoor localization using NFC and mobile sensor data corrected using neural net

Author(s):  
Tibor Tajti ◽  
Gábor Geda ◽  
Tamás Balla ◽  
Gyula Vad
Author(s):  
Juyuan Yin ◽  
Jian Sun ◽  
Keshuang Tang

Queue length estimation is of great importance for signal performance measures and signal optimization. With the development of connected vehicle technology and mobile internet technology, using mobile sensor data instead of fixed detector data to estimate queue length has become a significant research topic. This study proposes a queue length estimation method using low-penetration mobile sensor data as the only input. The proposed method is based on the combination of Kalman Filtering and shockwave theory. The critical points are identified from raw spatiotemporal points and allocated to different cycles for subsequent estimation. To apply the Kalman Filter, a state-space model with two state variables and the system noise determined by queue-forming acceleration is established, which can characterize the stochastic property of queue forming. The Kalman Filter with joining points as measurement input recursively estimates real-time queue lengths; on the other hand, queue-discharging waves are estimated with a line fitted to leaving points. By calculating the crossing point of the queue-forming wave and the queue-discharging wave of a cycle, the maximum queue length is also estimated. A case study with DiDi mobile sensor data and ground truth maximum queue lengths at Huanggang-Fuzhong intersection, Shenzhen, China, shows that the mean absolute percentage error is only 11.2%. Moreover, the sensitivity analysis shows that the proposed estimation method achieves much better performance than the classical linear regression method, especially in extremely low penetration rates.


2017 ◽  
Vol 16 (2) ◽  
pp. 18-22 ◽  
Author(s):  
Santosh Kumar ◽  
Gregory Abowd ◽  
William T. Abraham ◽  
Mustafa al'Absi ◽  
Duen Horng Chau ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guangbing Zhou ◽  
Jing Luo ◽  
Shugong Xu ◽  
Shunqing Zhang ◽  
Shige Meng ◽  
...  

Purpose Indoor localization is a key tool for robot navigation in indoor environments. Traditionally, robot navigation depends on one sensor to perform autonomous localization. This paper aims to enhance the navigation performance of mobile robots, a multiple data fusion (MDF) method is proposed for indoor environments. Design/methodology/approach Here, multiple sensor data i.e. collected information of inertial measurement unit, odometer and laser radar, are used. Then, an extended Kalman filter (EKF) is used to incorporate these multiple data and the mobile robot can perform autonomous localization according to the proposed EKF-based MDF method in complex indoor environments. Findings The proposed method has experimentally been verified in the different indoor environments, i.e. office, passageway and exhibition hall. Experimental results show that the EKF-based MDF method can achieve the best localization performance and robustness in the process of navigation. Originality/value Indoor localization precision is mostly related to the collected data from multiple sensors. The proposed method can incorporate these collected data reasonably and can guide the mobile robot to perform autonomous navigation (AN) in indoor environments. Therefore, the output of this paper would be used for AN in complex and unknown indoor environments.


Sign in / Sign up

Export Citation Format

Share Document