Where am I? Using Mobile Sensor Data to Predict a User’s Semantic Place with a Random Forest Algorithm

Author(s):  
Elisabeth Lex ◽  
Oliver Pimas ◽  
Jörg Simon ◽  
Viktoria Pammer-Schindler
2020 ◽  
Vol 12 (23) ◽  
pp. 3933
Author(s):  
Anggun Tridawati ◽  
Ketut Wikantika ◽  
Tri Muji Susantoro ◽  
Agung Budi Harto ◽  
Soni Darmawan ◽  
...  

Indonesia is the world’s fourth largest coffee producer. Coffee plantations cover 1.2 million ha of the country with a production of 500 kg/ha. However, information regarding the distribution of coffee plantations in Indonesia is limited. This study aimed to assess the accuracy of classification model and determine its important variables for mapping coffee plantations. The model obtained 29 variables which derived from the integration of multi-resolution, multi-temporal, and multi-sensor remote sensing data, namely, pan-sharpened GeoEye-1, multi-temporal Sentinel 2, and DEMNAS. Applying a random forest algorithm (tree = 1000, mtry = all variables, minimum node size: 6), this model achieved overall accuracy, kappa statistics, producer accuracy, and user accuracy of 79.333%, 0.774, 92.000%, and 90.790%, respectively. In addition, 12 most important variables achieved overall accuracy, kappa statistics, producer accuracy, and user accuracy 79.333%, 0.774, 91.333%, and 84.570%, respectively. Our results indicate that random forest algorithm is efficient in mapping coffee plantations in an agroforestry system.


Author(s):  
A.E. Semenov

The method of pedestrian navigation in the cities illustrated by the example of Saint-Petersburg was investigated. The factors influencing people when they choose a route for their walk were determined. Based on acquired factors corresponding data was collected and used to develop model determining attractiveness of a street in the city using Random Forest algorithm. The results obtained shows that routes provided by the method are 14% more attractive and just 6% longer compared with the shortest ones.


2020 ◽  
Vol 15 (S359) ◽  
pp. 40-41
Author(s):  
L. M. Izuti Nakazono ◽  
C. Mendes de Oliveira ◽  
N. S. T. Hirata ◽  
S. Jeram ◽  
A. Gonzalez ◽  
...  

AbstractWe present a machine learning methodology to separate quasars from galaxies and stars using data from S-PLUS in the Stripe-82 region. In terms of quasar classification, we achieved 95.49% for precision and 95.26% for recall using a Random Forest algorithm. For photometric redshift estimation, we obtained a precision of 6% using k-Nearest Neighbour.


2021 ◽  
Vol 252 ◽  
pp. 106906
Author(s):  
Guomin Shao ◽  
Wenting Han ◽  
Huihui Zhang ◽  
Shouyang Liu ◽  
Yi Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document