scholarly journals Control of the variability of the biofuel packaging process through the six sigma methodology: a case study

2020 ◽  
Vol 11 (6) ◽  
pp. 2020
Author(s):  
Walther Azzolini Júnior ◽  
Rafael Francisco Campos Pianno ◽  
Jorge Alberto Achcar

The present work carried out the control of the variability in the biodiesel packaging through the application of the steps of the DMAIC (Define Measure, Analyze, Improve and Control) of the Six Sigma quality program. The DMAIC method brings together a set of statistical and quality tools for the study of process variability. Prior to the project, in the period evaluated between June and October of the year 2017 the average monthly variation of loss was 387.7 liters with a standard deviation of 421.9 liters. After the implementation of the improvements between January and March of the year 2018, the average monthly variation was -3.187 liters with a standard deviation of 60.95 liters. This evolution in the control and reduction of losses in the container of biodiesel was possible through the actions of improvements and involvement of the people of the billing and shipping. After all the improvements implemented, the maintenance and continuity of the controls met two important requirements of the Six Sigma quality program: customer focus and financial impact.

2019 ◽  
Vol 16 (4) ◽  
pp. 594-624 ◽  
Author(s):  
Narottam Yadav ◽  
Kaliyan Mathiyazhagan ◽  
Krishna Kumar

PurposeThe purpose of this paper is to improve the yield of a particular model of a car windshield, as the organization faces losses due to poor performance and rejection.Design/methodology/approachThe Six Sigma DMAIC (define, measure, analyze, improve and control) methodology is used to reduce variation and defects in the process. It is a methodology based on data-driven and fact-based analysis to find out the root cause of the problem with the help of statistical analysis. A worst performing model is selected as a case study through the scoping tree. The preprocess, printing, bending and layup process defects are reduced by analyzing the potential causes and hypothesis testing.FindingsThis paper describes Six Sigma methodology in a glass manufacturing industry in India for automotive applications. The overall yield of a car windshield achieved 93.57 percent against the historical yield of 88.4 percent, resulting in saving 50 lacs per annum. Due to no rework or repairing in the glass, low first-time yield causes major losses. Process improvement through focused cross-functional team reduces variation in the process. Six Sigma improves profitability and reduces defects in the automotive glass manufacturing process.Research limitations/implicationsThis case study is applied in automotive glass manufacturing industries. For service and healthcare industries, a similar type of study can be performed. Further research on the common type of processor industry would be valuable.Practical implicationsThe case study can be used as a problem-solving methodology in manufacturing and service industries. The tools and techniques can be used in other manufacturing processes also. This paper is useful for industries, researchers and academics for understanding Six Sigma methodology and its practical implementation.Originality/valueThis case study is an attempt to solve automobile glass manufacturing problems through DMAIC approach. The paper is a real case study showing benefits of Six Sigma implementation in the manufacturing industry and saving an annual cost of 50 lacs due to rejections in the process.


2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S111-S112
Author(s):  
Y Wang ◽  
A Loboda ◽  
M Chitsaz ◽  
S Ganesan

Abstract Introduction/Objective DMAIC (an acronym for Define, Measure, Analyze, Improve and Control) refers to a data- driven improvement cycle used for improving, optimizing, and stabilizing business processes and designs. Our goal was to utilize DMAIC principle of six sigma quality to improve histology slide quality. Methods/Case Report We “defined” the problem as suboptimal quality in endometrial biopsy slides (defects). Utilizing the DMAIC principle and adhering to a strict timeline, the defects found during baseline slide quality review were “measured” by linking the defects to specific histology competencies, which were addressed systematically for process improvement (PI). After PI, a follow up review (“improve” and “control” phases) was carried out to identify measurable outcomes as a testament to quality. Results (if a Case Study enter NA) During the problem “measurement” phase, the defects found in the baseline review of 175 slides were linked to four specific histology competencies (fixation, embedding, cutting, and staining). Processing was excluded as it is completely automated and standardized. Our analysis showed that 83.3 % of defects were linked to embedding (“tissue too dispersed”). As embedding competency depends on the size and nature of the tissue (e.g. mucus and blood admixed with tissue), grossing competency was also addressed along with embedding at the respective workstations. Recommendations were offered to the grosser, embedder, and cutter to reduce variables during the “improvement” phase. Follow up review was done on 196 slides. The number of defective slides decreased and the defects that linked to “tissue too dispersed” had an overall improvement of 91.3%. Once the PI is proven to be effective, in service to histotechnology personnel biannually were also offered during “control” phase. Conclusion We have demonstrated successful methods for improving histology slide quality utilizing DMAIC principle of quality improvement by six sigma methodology DMAIC principle can be creatively adapted in laboratory practice management to enhance quality.


Exacta ◽  
2019 ◽  
Vol 17 (3) ◽  
pp. 191-200
Author(s):  
Marina Langoni Linares ◽  
Eliane Da Silva Christo ◽  
Kelly Alonso Costa

Customers are each day more demanding with costs reduction, sustainability, quality improvement and shorter lead times. Since logistics operation is involved in every step of the chain, it becomes an important asset for companies to win market share. Seeking to attend the organizations and customers’ needs, Lean Six Sigma methodology could bring benefits to logistics services. Aiming to study those benefits, this article presents a case study about the interaction between the LSS and the loading process in a paper mill located in Brazil. The site had already adopted the DMAIC method in the manufacturing areas, but not in the service ones, which made it easier the implementation, guaranteeing the support and involvement of management. In the end of the study, it was possible to notice several benefits in implementing the LSS, as reduction of 32% of cycle time and 43% of performance improvement.


2020 ◽  
Vol 26 (1) ◽  
pp. 30-35
Author(s):  
Tuan-Anh Tran ◽  
Khai Luu-Nhan ◽  
Rajab Ghabour ◽  
Miklos Daroczi

AbstractHandicraft production is usually chaotic and difficult to monitor, since its products and manufacturing processes are complex. As all the manufacturing steps rely on varied skill levels of the workers, the situation is even more stochastic. There are several common problems, such as inappropriate production method, line unbalance, excessive stock, lack of production planning and control phases, etc. They stem from the lack of suitable operation model, redundant workforce usage, and insufficient internal training activities, which lead to the waste of human resources. In this paper, a roadmap to improve the operational efficiency of handicraft manufacturing is suggested, using Lean-Six Sigma methodology and tools. A case study is conducted in a Vietnamese firm to show the validity of the approach.


2012 ◽  
Vol 622-623 ◽  
pp. 472-477
Author(s):  
Ali A. Karakhan ◽  
Angham E. Alsaffar

The aims of this study are to measure the defect rate and analyze the problems of production of ready concrete mixture plant by using Six Sigma methodology which is a business strategy for operations improvement depending basically on the application of its sub-methodology DMAIC improvement cycle and the basic statistical tools where the process sigma level of concrete production in the case study was 2.41 σ.


UNISTEK ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 6-10
Author(s):  
Egar Naufal Ari Satya ◽  
Wahyudin Wahyudin

Abstrak. Dunia industri yang semakin berkembang akan mengakibatkan banyaknya persaingan. Perus-ahaan yang dapat bersaing adalah perusahaan yang dapat menjaga  kualitas produknya dengan baik sehingga dapat memenuhi kepuasan konsumen. Maka dari itu diperlukan pengendalian kualitas. Penelitian ini difokuskan pada penurunan cacat pada produk batu bata merah di CV. Ghatan Fatahillah dengan metode Six Sigma-DMAIC (Define, Measure, Analyze, Improve, dan Control). Dari hasil penelitian didapatkan DPMO sebesar 36.212 dengan nilai sigma 3,29. Jenis cacat yang paling sering terjadi pada batu bata merah yaitu pecah/patah yaitu sebesar 4.327 atau 59,81% dari total keseluruhan produk yang cacat.  Hasil dari tahap analyze dengan fishbone diagram, ditetapkan penyebab dari pecah/cacat, yaitu: pekerja kurang paham standar kualitas, tidak adanya pemeriksaan produk, pekerja kurang paham prosedur kerja, kinerja mesin tidak stabil, pekerja kurang teliti,  jumlah penggilingan tidak menentu, dan komposisi batu bata tidak menentu. Maka perlu dilakukan usulan perbaikan agar dapat mengurangi jumlah produk yang cacat pada batu bata merah. Kata kunci: DMAIC, DPMO, Pengendalian Kualitas, Six Sigma Abstract. The growing industrial world will result in a lot of competition. Companies that can compete are companies that can maintain the quality of their products well so that they can meet customer satisfaction. Therefore, quality control is needed. This research is focused on reducing defects in red brick products at CV. Ghatan Fatahillah with the Six Sigma-DMAIC method (Define, Measure, Analyze, Improve, and Control). From the research results obtained DPMO of 36,212 with a sigma value of 3.29. The type of defect that most often occurs in red bricks is broken / broken, which is 4,327 or 59.81% of the total defective products. The results of the Analyze stage with the fishbone diagram showed that the causes of breakage / defects were determined, namely: workers do not understand quality standards, lack of product inspection, workers do not understand work procedures, unstable machine performance, workers are not careful, the number of mills is erratic, and composition erratic bricks. So it is necessary to make improvement proposals in order to reduce the number of defective products in red bricks. Keywords: DMAIC, DPMO, Quality Control, Six Sigma


Sign in / Sign up

Export Citation Format

Share Document