scholarly journals A comparison of substrate oxidation during prolonged exercise in men at terrestrial altitude and normobaric normoxia following the coingestion of13C glucose and13C fructose

2017 ◽  
Vol 5 (1) ◽  
pp. e13101 ◽  
Author(s):  
John P. O'Hara ◽  
David R. Woods ◽  
Adrian Mellor ◽  
Christopher Boos ◽  
Liam Gallagher ◽  
...  
1990 ◽  
Vol 69 (3) ◽  
pp. 1047-1052 ◽  
Author(s):  
F. Peronnet ◽  
D. Massicotte ◽  
G. Brisson ◽  
C. Hillaire-Marcel

The purpose of this study is to outline a common mistake made when the rate of oxidation of exogenous substrates during prolonged exercise is computed using 13C naturally labeled substrates. The equation proposed and commonly used in the computation does not take into account that exercise and/or exogenous substrate ingestion modifies the composition of the mixture of endogenous substrates oxidized and, consequently, the isotopic composition of CO2 arising from oxidation of endogenous substrates. The recovery of 13C and the amount of exogenous substrate oxidized are thus overestimated. An adequate procedure for the computation of exogenous substrate oxidation taking into account changes in isotopic composition of CO2 arising from oxidation of endogenous substrates is suggested. Results from a pilot experiment (4 subjects) using this procedure indicate that over 2 h of exercise (66% of maximal O2 uptake), with ingestion of 60 g of glucose, 39 +/- 4 g of glucose were oxidized. Estimates made without taking into account changes in isotopic composition of CO2 arising from oxidation of endogenous substrates range between 70 +/- 8 and 44 +/- 3 g depending on 1) the isotopic composition of exogenous glucose and 2) the isotopic composition of expired CO2 taken as reference (rest or exercise without glucose ingestion). These observations suggest that results from previous studies of exogenous substrate oxidation during exercise using 13C labeling should be used with caution.


Author(s):  
Ezzatollah Keyhani ◽  
Larry F. Lemanski ◽  
Sharon L. Lemanski

Energy for sperm motility is provided by both glycolytic and respiratory pathways. Mitochondria are involved in the latter pathway and conserve energy of substrate oxidation by coupling to phosphorylation. During spermatogenesis, the mitochondria undergo extensive transformation which in many species leads to the formation of a nebemkem. The nebemkem subsequently forms into a helix around the axial filament complex in the middle piece of spermatozoa.Immature spermatozoa of axolotls contain numerous small spherical mitochondria which are randomly distributed throughout the cytoplasm (Fig. 1). As maturation progresses, the mitochondria appear to migrate to the middle piece region where they become tightly packed to form a crystalline-like sheath. The cytoplasm in this region is no longer abundant (Fig. 2) and the plasma membrane is now closely apposed to the outside of the mitochondrial layer.


2007 ◽  
Vol 16 (3) ◽  
pp. 213-222 ◽  
Author(s):  
김대수 ◽  
JongHyuck Kim ◽  
Park Jin-Hong ◽  
Sang- Nam Nam

Author(s):  
Anatolii V. Kotsuruba ◽  
Yulia P. Korkach ◽  
Sergey O. Talanov ◽  
Olga V. Bazilyuk ◽  
Lyubov G. Stepanenko ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 229-LB
Author(s):  
NICHOLAS T. BROSKEY ◽  
TERRY E. JONES ◽  
ZHEN YANG ◽  
NKAUJYI KHANG ◽  
DONGHAI ZHENG ◽  
...  

2018 ◽  
Author(s):  
Asim Maity ◽  
Sung-Min Hyun ◽  
Alan Wortman ◽  
David Powers

<p>Hypervalent iodine(V) reagents, such as Dess-Martin periodinane (DMP) and 2-iodoxybenzoic acid (IBX), are broadly useful oxidants in chemical synthesis. Development of strategies to access these reagents from O2 would immediately enable use of O2 as a terminal oxidant in a broad array of substrate oxidation reactions. Recently we disclosed the aerobic synthesis of I(III) reagents by intercepting reactive oxidants generated during aldehyde autoxidation. Here, we couple aerobic oxidation of iodobenzenes with disproportionation of the initially generated I(III) compounds to generate I(V) reagents. The aerobically generated I(V) reagents exhibit substrate oxidation chemistry analogous to that of DMP. Further, the developed aerobic generation of I(V) has enabled the first application of I(V) intermediates in aerobic oxidation catalysis.</p>


1994 ◽  
Vol 59 (5) ◽  
pp. 1066-1076 ◽  
Author(s):  
Šárka Klementová ◽  
Dana M. Wagnerová

The influence of ferric ions on photoinitiated reaction of dioxygen with two carbon organic acids, aldehydes and alcohols related to natural waters was demonstrated. Photocatalytic effect of ferric ions, i.e. photochemical reduction of Fe(III) as the catalyst generating step, has been found to be the common principal of these reactions. The overall quantum yields of the reactions are in the range from 0.3 to 1.2. A mathematical model designed for the mechanism of cyclic generation of catalyst in the singlet substrate oxidation by O2 was applied to the system glyoxalic acid + Fe(III); a fair agreement between the simulated and experimental kinetic curves was obtained. The experimental rate constant is 4.4 .10-4 s -1.


Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 821-830
Author(s):  
Davide De Simeis ◽  
Stefano Serra ◽  
Alessandro Di Fonzo ◽  
Francesco Secundo

Natural flavor and fragrance market size is expected to grow steadily due to the rising consumer demand of natural ingredients. This market request is guided by the general opinion that the production of natural compounds leads to a reduction of pollution, with inherent advantages for the environment and people’s health. The biotransformation reactions have gained high relevance in the production of natural products. In this context, few pieces of research have described the role of microalgae in the oxidation of terpenoids. In this present study, we questioned the role of microalgal based oxidation in the synthesis of high-value flavors and fragrances. This study investigated the role of three different microalgae strains, Chlorella sp. (211.8b and 211.8p) and Chlorococcum sp. (JB3), in the oxidation of different terpenoid substrates: α-ionone, β-ionone, theaspirane and valencene. Unfortunately, the experimental data showed that the microalgal strains used are not responsible for the substrate oxidation. In fact, our experiments demonstrate that the transformation of the four starting compounds is a photochemical reaction that involves the oxygen as oxidant. Even though these findings cast a shadow on the use of these microorganisms for an industrial purpose, they open a new possible strategy to easily obtain nootkatone in a natural way by just using an aqueous medium, oxygen and light.


Sign in / Sign up

Export Citation Format

Share Document