photochemical reduction
Recently Published Documents


TOTAL DOCUMENTS

507
(FIVE YEARS 58)

H-INDEX

51
(FIVE YEARS 7)

2022 ◽  
Vol 23 (2) ◽  
pp. 949
Author(s):  
Vadim Ershov ◽  
Natalia Tarasova ◽  
Evgeny Abkhalimov ◽  
Alexey Safonov ◽  
Vladimir Sorokin ◽  
...  

The great attention paid to silver nanoparticles is largely related to their antibacterial and antiviral effects and their possible use as efficient biocidal agents. Silver nanoparticles are being widely introduced into various areas of life, including industry, medicine, and agriculture. This leads to their spreading and entering the environment, which generates the potential risk of toxic effect on humans and other biological organisms. Proposed paper describes the preparation of silver hydrosols containing spherical metal nanoparticles by photochemical reduction of Ag+ ions with oxalate ions. In deaerated solutions, this gives ~10 nm particles, while in aerated solutions, ~20 nm particles with inclusion of the oxide Ag2O are obtained. Nanoparticles inhibit the bacterium Escherichia coli and suppress the cell growth at concentrations of ~1 × 10−6–1 × 10−4 mol L−1. Silver particles cause the loss of pili and deformation and destruction of cell membranes. A mechanism of antibacterial action was proposed, taking into account indirect suppressing action of Ag+ ions released upon the oxidative metal dissolution and direct (contact) action of nanoparticles on bacterial cells, resulting in a change in the shape and destruction of the bacteria.


2021 ◽  
Author(s):  
Weibin Xie ◽  
Jiasheng Xu ◽  
Ubaidah Md Idros ◽  
Jouji Katsuhira ◽  
Masaaki Fuki ◽  
...  

The increasing CO2 concentration in the atmosphere is an urgent social problem that has to be resolved. Reducing CO2 into compounds useful as energy sources and carbon materials is desirable. For the CO2 reduction reaction (CO2RR) to be operational on a global scale, the catalyst system must: (1) use only renewable energy, (2) be built from abundantly available elements, and (3) not require high-energy reactants. Although light is an alluring energy source, most existing methods utilize electricity. Furthermore, catalyst systems are based on rare heavy metals. Herein, we present a transition-metal-free catalyst system for CO2RR using visible light and containing a carbazole photocatalyst and an organohydride co-catalyst based on benzimidazoline. It produced formate with a turnover number exceeding 8000. No other reduced products such as H2 and CO were generated, confirming the high selectivity of the system. This finding is essential for operating artificial photosynthesis on a useful scale.


2021 ◽  
Vol 118 (36) ◽  
pp. e2101817118
Author(s):  
Xueli Zheng ◽  
Jing Tang ◽  
Alessandro Gallo ◽  
Jose A. Garrido Torres ◽  
Xiaoyun Yu ◽  
...  

The efficiency of the synthesis of renewable fuels and feedstocks from electrical sources is limited, at present, by the sluggish water oxidation reaction. Single-atom catalysts (SACs) with a controllable coordination environment and exceptional atom utilization efficiency open new paradigms toward designing high-performance water oxidation catalysts. Here, using operando X-ray absorption spectroscopy measurements with calculations of spectra and electrochemical activity, we demonstrate that the origin of water oxidation activity of IrNiFe SACs is the presence of highly oxidized Ir single atom (Ir5.3+) in the NiFe oxyhydroxide under operating conditions. We show that the optimal water oxidation catalyst could be achieved by systematically increasing the oxidation state and modulating the coordination environment of the Ir active sites anchored atop the NiFe oxyhydroxide layers. Based on the proposed mechanism, we have successfully anchored Ir single-atom sites on NiFe oxyhydroxides (Ir0.1/Ni9Fe SAC) via a unique in situ cryogenic–photochemical reduction method that delivers an overpotential of 183 mV at 10 mA ⋅ cm−2 and retains its performance following 100 h of operation in 1 M KOH electrolyte, outperforming the reported catalysts and the commercial IrO2 catalysts. These findings open the avenue toward an atomic-level understanding of the oxygen evolution of catalytic centers under in operando conditions.


2021 ◽  
Author(s):  
Zhonghua Qu ◽  
Xing Chen ◽  
Shuai Zhong ◽  
Guo-Jun Deng ◽  
Huawen Huang

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1113
Author(s):  
Iuliia Mukha ◽  
Oksana Chepurna ◽  
Nadiia Vityuk ◽  
Alina Khodko ◽  
Liudmyla Storozhuk ◽  
...  

Magneto-plasmonic nanocomposites can possess properties inherent to both individual components (iron oxide and gold nanoparticles) and are reported to demonstrate high potential in targeted drug delivery and therapy. Herein, we report on Fe3O4/Au magneto-plasmonic nanocomposites (MPNC) synthesized with the use of amino acid tryptophan via chemical and photochemical reduction of Au ions in the presence of nanosized magnetite. The magnetic field (MF) induced aggregation was accompanied by an increase in the absorption in the near-infrared (NIR) spectral region, which was demonstrated to provide an enhanced photothermal (PT) effect under NIR laser irradiation (at 808 nm). A possibility for therapeutic application of the MPNC was illustrated using cancer cells in vitro. Cultured HeLa cells were treated by MPNC in the presence of MF and without it, following laser irradiation and imaging using confocal laser scanning microscopy. After scanning laser irradiation of the MPNC/MF treated cells, a formation and rise of photothermally-induced microbubbles on the cell surfaces was observed, leading to a damage of the cell membrane and cell destruction. We conclude that the synthesized magneto-plasmonic Fe3O4/Au nanosystems exhibit magnetic field-induced reversible aggregation accompanied by an increase in NIR absorption, allowing for an opportunity to magnetophoretically control and locally enhance a NIR light-induced thermal effect, which holds high promise for the application in photothermal therapy.


2021 ◽  
Vol 24 (1) ◽  
pp. 38-42
Author(s):  
Umair Yaqub Qazi

A photochemical reduction of a silver salt precursor using near-ultra-violet (UV) pulsed laser (355 nm) irradiation into aqueous surfactant sodium-bis (2–ethylhexyl) sulfosuccinate (AOT) solution has succeeded in synthesizing homogenous speculative silver nanoparticles (Ag NPs). Without using any additive, the irradiation from ns laser pulses to aqueous silver nitrate solution was observed to create nanocubes (NCs). The photoproduct was transformed into a nanosphere when irradiated with a particular AOT concentration. The photoproduct concentration of NCs to NSs was approximately ten times lower than the critical concentration of micellar (CMC) in AOT, which means that the growth of NSs was aided in a single layer of AOT adsorbed on silver surfaces. A UV / Visible Spectrophotometer and Transmission/Scanning electron microscopy (TEM/SEM) were used to characterize the photochemically synthesized sample thoroughly. The mean size of AgNSs, analyzed by TEM, was 8 nm. These parameters have shown the growth of AgNSs and discussed in the paper. These nanoparticles are potential candidates for catalyst, semiconductor, photovoltaic equipment, medical diagnostics applications than bulk materials.


2021 ◽  
Author(s):  
Xueli Zheng ◽  
Jing Tang ◽  
Alessandro Gallo ◽  
Jose Antonio Garrido Torres ◽  
Xiaoyun Yu ◽  
...  

<p>The efficiency of the synthesis of renewable fuels and feedstocks from electrical sources is limited at present by the sluggish water oxidation reaction. Single atom catalysts (SACs) with a controllable coordination environment and exceptional atom utilization efficiency open new paradigms towards designing high performance water oxidation catalysts. Here, using<i> operando</i> X-ray absorption spectroscopy measurements with calculations of spectra and electrochemical activity, we demonstrate that the origin of water oxidation activity of IrNiFe SACs is the presence of highly oxidized Ir single atom (Ir<sup>5.3+</sup>)<sup> </sup>in the NiFe oxyhydroxide under operating conditions. We show that the optimal water oxidation catalyst could be achieved by systematically increasing the oxidation state and modulating the coordination environments of the Ir active sites anchored atop the NiFe oxyhydroxide layers. Based on the proposed mechanism, we have successfully anchored Ir single-atom sites on NiFe oxyhydroxides (Ir<sub>0.1</sub>/Ni<sub>9</sub>Fe SAC) via a unique<i> in situ</i> cryogenic photochemical reduction (<i>in situ</i> Cryo-PCR) method which delivers an overpotential of 183 millivolts at 10 milliamperes per square centimeter and retains its performance following 20 hours of operation in 1 M KOH electrolyte, outperforming the reported catalysts and the commercial IrO<sub>2</sub> catalysts. These findings open the avenue towards atomic-level understanding of oxygen evolution of catalytic centers under <i>in operando</i> condition.</p>


2021 ◽  
Author(s):  
Xueli Zheng ◽  
Jing Tang ◽  
Alessandro Gallo ◽  
Jose Antonio Garrido Torres ◽  
Xiaoyun Yu ◽  
...  

<p>The efficiency of the synthesis of renewable fuels and feedstocks from electrical sources is limited at present by the sluggish water oxidation reaction. Single atom catalysts (SACs) with a controllable coordination environment and exceptional atom utilization efficiency open new paradigms towards designing high performance water oxidation catalysts. Here, using<i> operando</i> X-ray absorption spectroscopy measurements with calculations of spectra and electrochemical activity, we demonstrate that the origin of water oxidation activity of IrNiFe SACs is the presence of highly oxidized Ir single atom (Ir<sup>5.3+</sup>)<sup> </sup>in the NiFe oxyhydroxide under operating conditions. We show that the optimal water oxidation catalyst could be achieved by systematically increasing the oxidation state and modulating the coordination environments of the Ir active sites anchored atop the NiFe oxyhydroxide layers. Based on the proposed mechanism, we have successfully anchored Ir single-atom sites on NiFe oxyhydroxides (Ir<sub>0.1</sub>/Ni<sub>9</sub>Fe SAC) via a unique<i> in situ</i> cryogenic photochemical reduction (<i>in situ</i> Cryo-PCR) method which delivers an overpotential of 183 millivolts at 10 milliamperes per square centimeter and retains its performance following 20 hours of operation in 1 M KOH electrolyte, outperforming the reported catalysts and the commercial IrO<sub>2</sub> catalysts. These findings open the avenue towards atomic-level understanding of oxygen evolution of catalytic centers under <i>in operando</i> condition.</p>


Sign in / Sign up

Export Citation Format

Share Document