scholarly journals The structural synthesis of planar 10-link, 3-DOF simple and multiple joint kinematic chains

Author(s):  
Jinkui Chu ◽  
Yanhuo Zou ◽  
Pengfei He
2013 ◽  
Vol 135 (9) ◽  
Author(s):  
Huafeng Ding ◽  
Weijuan Yang ◽  
Peng Huang ◽  
Andrés Kecskeméthy

It is of great importance in the conceptual creative design of mechanical systems to synthesize as many feasible kinematic structures of mechanisms as possible. However, the methods for the structural synthesis of multiple joint kinematic chains are seldom addressed in literature even though they are widely used in various mechanical products. This paper proposes an automatic method to synthesize planar multiple joint kinematic chains. First, the bicolor topological graph and the bicolor contracted graph are introduced to represent the topological structures of multiple joint kinematic chains. Then, the characteristic number string of bicolor topological graphs is proposed and used to efficiently detect isomorphism in the synthesis progress. Finally, a systematic method for the synthesis of kinematic chains with one multiple joint is proposed, and the whole families of multiple joint kinematic chains with up to 16 links and all possible degrees of freedom are synthesized for the first time.


Author(s):  
Jinkui Chu ◽  
Yanhuo Zou

Structural synthesis of kinematic chains is one of the most creative and important stages in mechanical design. It provides a number of optional structure types when new mechanisms are created. In this paper, a new algorithm for structural synthesis of planar simple and multiple joint kinematic chains has been proposed by subsequently adding single-kinematic-chain method. By this algorithm, the structure of multiple joint kinematic chains with specified degree-of-freedom, the number of links, and total multiple joint factors P can be synthesized in batch. When P = 0, the structure of simple joint kinematic chains with specified degree-of-freedom, and the number of links can also be generated. Finally, structural synthesis examples of planar simple and multiple joint kinematic chains have been studied to show effectiveness of this algorithm.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 601
Author(s):  
Mahmoud Helal ◽  
Jong Wan Hu ◽  
Hasan Eleashy

In this work, a new algorithm is proposed for a unique representation for simple and multiple joint planar kinematic chains (KCs) having any degree of freedom (DOF). This unique representation of KCs enhances the isomorphism detection during the structural synthesis process of KCs. First, a new concept of joint degree is generated for all joints of a given KC based on joint configuration. Then, a unified loop array (ULA) is obtained for each independent loop. Finally, a unified chain matrix (UCM) is established as a unique representation for a KC. Three examples are presented to illustrate the proposed algorithm procedures and to test its validity. The algorithm is applied to get a UCM for planar KCs having 7–10 links. As a result, a complete atlas database is introduced for 7–10-link non-isomorphic KCs with simple or/and multiple joints and their corresponding unified chain matrix.


2021 ◽  
Vol 12 (2) ◽  
pp. 1061-1071
Author(s):  
Jinxi Chen ◽  
Jiejin Ding ◽  
Weiwei Hong ◽  
Rongjiang Cui

Abstract. A plane kinematic chain inversion refers to a plane kinematic chain with one link fixed (assigned as the ground link). In the creative design of mechanisms, it is important to select proper ground links. The structural synthesis of plane kinematic chain inversions is helpful for improving the efficiency of mechanism design. However, the existing structural synthesis methods involve isomorphism detection, which is cumbersome. This paper proposes a simple and efficient structural synthesis method for plane kinematic chain inversions without detecting isomorphism. The fifth power of the adjacency matrix is applied to recognize similar vertices, and non-isomorphic kinematic chain inversions are directly derived according to non-similar vertices. This method is used to automatically synthesize 6-link 1-degree-of-freedom (DOF), 8-link 1-DOF, 8-link 3-DOF, 9-link 2-DOF, 9-link 4-DOF, 10-link 1-DOF, 10-link 3-DOF and 10-link 5-DOF plane kinematic chain inversions. All the synthesis results are consistent with those reported in literature. Our method is also suitable for other kinds of kinematic chains.


1973 ◽  
Vol 95 (2) ◽  
pp. 525-532 ◽  
Author(s):  
M. Huang ◽  
A. H. Soni

Using graph theory and Polya’s theory of counting, the present paper performs structural synthesis and analysis of planar and three-dimensional kinematic chains. The Section 2 of the paper develops a mathematical model that permits one to perform structural analysis and synthesis of planar kinematic chains with kinematic elements such as revolute pairs, cam pairs, springs, belt-pulley, piston-cylinder, and gears. The theory developed is applied to enumerate eight-link kinematic chains with these kinematic elements. The Section 3 of the paper develops a mathematical model that permits one to perform structural analysis and synthesis of multi-loop spatial kinematic chains with higher and lower kinematic pairs. The theory developed is applied to enumerate all possible two-loop kinematic chains with or without general constraints.


2021 ◽  
pp. 1-13
Author(s):  
Rongjiang Cui ◽  
Zhizheng Ye ◽  
Shifu Xu ◽  
Chuan-yu Wu ◽  
Liang Sun

Abstract The structural synthesis of planar kinematic chains (KCs) with prismatic pairs (P-pairs) is the basis of innovating mechanisms containing P-pairs. In literature, only a little research has been carried out to synthesize planar KCs with P-pairs. Moreover, these synthesis methods for KCs with P-pairs involve all possible combinations of edges, resulting in a large number of isomorphic KCs and a low synthesis efficiency. In this study, our previous similarity recognition algorithm is improved and applied to synthesize planar KCs with P-pairs. Only a small number of isomorphic KCs are generated in the synthesis process, and the synthesis efficiency is greatly enhanced. Our method is applied to synthesize 9-link 2-DOF, 10-link 1-DOF, and 11-link 2-DOF KCs with one and two P-pairs. Our synthesis results are consistent with those of the existing literature. The present work is helpful to design mechanisms with P-pairs and can be extended to mechanisms with other types of kinematic pairs.


Sign in / Sign up

Export Citation Format

Share Document