scholarly journals Structural synthesis of plane kinematic chain inversions without detecting isomorphism

2021 ◽  
Vol 12 (2) ◽  
pp. 1061-1071
Author(s):  
Jinxi Chen ◽  
Jiejin Ding ◽  
Weiwei Hong ◽  
Rongjiang Cui

Abstract. A plane kinematic chain inversion refers to a plane kinematic chain with one link fixed (assigned as the ground link). In the creative design of mechanisms, it is important to select proper ground links. The structural synthesis of plane kinematic chain inversions is helpful for improving the efficiency of mechanism design. However, the existing structural synthesis methods involve isomorphism detection, which is cumbersome. This paper proposes a simple and efficient structural synthesis method for plane kinematic chain inversions without detecting isomorphism. The fifth power of the adjacency matrix is applied to recognize similar vertices, and non-isomorphic kinematic chain inversions are directly derived according to non-similar vertices. This method is used to automatically synthesize 6-link 1-degree-of-freedom (DOF), 8-link 1-DOF, 8-link 3-DOF, 9-link 2-DOF, 9-link 4-DOF, 10-link 1-DOF, 10-link 3-DOF and 10-link 5-DOF plane kinematic chain inversions. All the synthesis results are consistent with those reported in literature. Our method is also suitable for other kinds of kinematic chains.

2019 ◽  
Vol 13 (4) ◽  
pp. 5717-5734
Author(s):  
M. S. Alam ◽  
M. Suhaib

Structural synthesis of kinematic chains has been an indispensable area of the mechanism-design problem. The duplication may occur while developing kinematic chains. Therefore, an isomorphic test is required to eliminate duplication. For this purpose, the numbers of methods are proposed during recent years. However, most of the methods are complex and difficult to understand, and fulfil the only primary condition, but not the secondary conditions for isomorphism detection. In the present work, a new method is introduced to detect isomorphism in planar kinematic chains (KCs) fulfilling both primary and secondary conditions. First, KC’s are topologically transformed into skeleton diagrams, and then skeleton matrices [S] and identification strings [IS] are formulated consequently. In order to detect isomorphism, the IS is considered as an invariant string of a KC which in turn, enables the detection of isomorphism between the KCs. The proposed method accurately recognizes isomorphism up to 12 links KCs with no counter examples found in the literature. Three examples with one degree of freedom having 10 links 12 joints, 10 links 13 joints and 12 links three degree of freedom systems are introduced to reveal the reliability and strength of the proposed method.


Author(s):  
Varada Raju Dharanipragada ◽  
Nagaraja Kumar Yenugadhati ◽  
A. C. Rao

Abstract Structural synthesis of kinematic chains leans heavily on indirect methods, most of them based on Graph Theory, mainly because reliable isomorphism tests are not available. Recently however, the first and third authors have established the Secondary Hamming String of a kinematic chain as an excellent indicator of its isomorphism. In the present paper this Hamming String method was applied with slight modifications for synthesizing on a PC-386, distinct kinematic chains with given number of links and family description. The computer program, written in Pascal, generated both the six-bar and all 16 eight-bar chains as well as one sample family (2008) of ten-bar chains, verifying previously established results. Hence this paper presents a direct, quick and reliable method to synthesize planar simple-jointed chains, open or closed, with single- or multi-degree of freedom, containing any number of links. A spin-off of this paper is a simple, concise and unambiguous notation for representing a chain.


1999 ◽  
Vol 122 (1) ◽  
pp. 31-42 ◽  
Author(s):  
A. C. Rao ◽  
V. V. N. R. Prasad Raju Pathapati

Structural synthesis of kinematic chains usually involves the creation of a complete list of kinematic chains, followed by a isomorphism test to discard duplicate chains. A significant unsolved problem in structural synthesis is the guaranteed precise elimination of all isomorphs. Many methods are available to the kinematician to detect isomorphism among chains and inversions but each has its own shortcomings. Most of the study to detect isomorphism is based on link-adjacency matrices or their modification but the study based on loops is very scanty although it is very important part of a kinematic chain.  Using the loop concept a method is reported in this paper to reveal simultaneously chain is isomorphic, link is isomorphic, and type of freedom with no extra computational effort. A new invariant for a chain, called the chain loop string is developed for a planar kinematic chain with simple joints to detect isomorphism among chains. Another invariant called the link adjacency string is developed, which is a by-product of the same method to detect inversions of a given chain. The proposed method is also applicable to know the type of freedom of a chain in case of multi degree of freedom chains. [S1050-0472(00)70801-4]


2011 ◽  
Vol 12 (3) ◽  
Author(s):  
Dr. Shubhashis Sanyal

Inversions are various structural possibilities of a kinematic chain. The number of inversions depends on the number of links of a kinematic chain. At the stage of structural synthesis, identification of distinct structural inversions of a particular type of kinematic chain is necessary. Various researchers have proposed methods for identification of distinct inversions. Present method based on Link joint connectivity is proposed to identify the distinct inversions of a planar kinematic chain. Method is tested successfully on single degree and multiple degree of freedom planar kinematic chains. ABSTRAK: Penyonsangan merupakan kebarangkalian pelbagai struktur suatu rangkaian kinematik. Jumlah songsangan bergantung kepada jumlah hubungan suatu rangkaian kinematik. Pada peringkat sintesis struktur, pengenalan songsangan struktur yang berbeza untuk suatu jenis rangkaian kinematik adalah perlu. Ramai penyelidik telah mencadangkan pelbagai kaedah pengenalan songsangan yang berbeza. Kaedah terkini berdasarkan hubungan kesambungan bersama telah dicadangkan untuk mengenalpasti songsangan yang berbeza dalam suatu satah rangkaian kinematik.


Author(s):  
Jinkui Chu ◽  
Yanhuo Zou

Structural synthesis of kinematic chains is one of the most creative and important stages in mechanical design. It provides a number of optional structure types when new mechanisms are created. In this paper, a new algorithm for structural synthesis of planar simple and multiple joint kinematic chains has been proposed by subsequently adding single-kinematic-chain method. By this algorithm, the structure of multiple joint kinematic chains with specified degree-of-freedom, the number of links, and total multiple joint factors P can be synthesized in batch. When P = 0, the structure of simple joint kinematic chains with specified degree-of-freedom, and the number of links can also be generated. Finally, structural synthesis examples of planar simple and multiple joint kinematic chains have been studied to show effectiveness of this algorithm.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 601
Author(s):  
Mahmoud Helal ◽  
Jong Wan Hu ◽  
Hasan Eleashy

In this work, a new algorithm is proposed for a unique representation for simple and multiple joint planar kinematic chains (KCs) having any degree of freedom (DOF). This unique representation of KCs enhances the isomorphism detection during the structural synthesis process of KCs. First, a new concept of joint degree is generated for all joints of a given KC based on joint configuration. Then, a unified loop array (ULA) is obtained for each independent loop. Finally, a unified chain matrix (UCM) is established as a unique representation for a KC. Three examples are presented to illustrate the proposed algorithm procedures and to test its validity. The algorithm is applied to get a UCM for planar KCs having 7–10 links. As a result, a complete atlas database is introduced for 7–10-link non-isomorphic KCs with simple or/and multiple joints and their corresponding unified chain matrix.


2014 ◽  
Vol 575 ◽  
pp. 501-506 ◽  
Author(s):  
Shubhashis Sanyal ◽  
G.S. Bedi

Kinematic chains differ due to the structural differences between them. The location of links, joints and loops differ in each kinematic chain to make it unique. Two similar kinematic chains will produce similar motion properties and hence are avoided. The performance of these kinematic chains also depends on the individual topology, i.e. the placement of its entities. In the present work an attempt has been made to compare a family of kinematic chains based on its structural properties. The method is based on identifying the chains structural property by using its JOINT LOOP connectivity table. Nomenclature J - Number of joints, F - Degree of freedom of the chain, N - Number of links, L - Number of basic loops (independent loops plus one peripheral loop).


Author(s):  
Jieyu Wang ◽  
Xianwen Kong

A novel construction method is proposed to construct multimode deployable polyhedron mechanisms (DPMs) using symmetric spatial RRR compositional units, a serial kinematic chain in which the axes of the first and the third revolute (R) joints are perpendicular to the axis of the second R joint. Single-loop deployable linkages are first constructed using RRR units and are further assembled into polyhedron mechanisms by connecting single-loop kinematic chains using RRR units. The proposed mechanisms are over-constrained and can be deployed through two approaches. The prism mechanism constructed using two Bricard linkages and six RRR limbs has one degree-of-freedom (DOF). When removing three of the RRR limbs, the mechanism obtains one additional 1-DOF motion mode. The DPMs based on 8R and 10R linkages also have multiple modes, and several mechanisms are variable-DOF mechanisms. The DPMs can switch among different motion modes through transition positions. Prototypes are 3D-printed to verify the feasibility of the mechanisms.


2021 ◽  
pp. 1-13
Author(s):  
Rongjiang Cui ◽  
Zhizheng Ye ◽  
Shifu Xu ◽  
Chuan-yu Wu ◽  
Liang Sun

Abstract The structural synthesis of planar kinematic chains (KCs) with prismatic pairs (P-pairs) is the basis of innovating mechanisms containing P-pairs. In literature, only a little research has been carried out to synthesize planar KCs with P-pairs. Moreover, these synthesis methods for KCs with P-pairs involve all possible combinations of edges, resulting in a large number of isomorphic KCs and a low synthesis efficiency. In this study, our previous similarity recognition algorithm is improved and applied to synthesize planar KCs with P-pairs. Only a small number of isomorphic KCs are generated in the synthesis process, and the synthesis efficiency is greatly enhanced. Our method is applied to synthesize 9-link 2-DOF, 10-link 1-DOF, and 11-link 2-DOF KCs with one and two P-pairs. Our synthesis results are consistent with those of the existing literature. The present work is helpful to design mechanisms with P-pairs and can be extended to mechanisms with other types of kinematic pairs.


Author(s):  
A Mohammad ◽  
R A Khan ◽  
V P Agrawal

Development of the methods for generating distinct mechanisms derived from a given family of kinematic chains has been persued by a number of researchers in the past, as the distinct kinematic structures provide distinct performance characteristics. A new method is proposed to identify the distinct mechanisms derived from a given kinematic chain in this paper. Kinematic chains and their derived mechanisms are represented in the form of an extended adjacency matrix [EA] using the graph theoretic approach. Two structural invariants derived from the eigen spectrum of the [EA] matrix are the sum of absolute eigen values EA∑ and maximum absolute eigen value EAmax. These invariants are used as the composite identification number of a kinematic chain and mechanism and are tested to identify the all-distinct mechanisms derived from the family of 1-F kinematic chains up to 10 links. The identification of distinct kinematic chains and their mechanisms is necessary to select the best possible mechanism for the specified task at the conceptual stage of design.


Sign in / Sign up

Export Citation Format

Share Document