Lung cancer diagnosis from CT images using CAD system: a review

Author(s):  
Ezhil E. Nithila ◽  
S.S. Kumar
Author(s):  
S. Vishwa Kiran ◽  
Inderjeet Kaur ◽  
K. Thangaraj ◽  
V. Saveetha ◽  
R. Kingsy Grace ◽  
...  

In recent times, the healthcare industry has been generating a significant amount of data in distinct formats, such as electronic health records (EHR), clinical trials, genetic data, payments, scientific articles, wearables, and care management databases. Data science is useful for analysis (pattern recognition, hypothesis testing, risk valuation) and prediction. The major, primary usage of data science in the healthcare domain is in medical imaging. At the same time, lung cancer diagnosis has become a hot research topic, as automated disease detection poses numerous benefits. Although numerous approaches have existed in the literature for lung cancer diagnosis, the design of a novel model to automatically identify lung cancer is a challenging task. In this view, this paper designs an automated machine learning (ML) with data science-enabled lung cancer diagnosis and classification (MLDS-LCDC) using computed tomography (CT) images. The presented model initially employs Gaussian filtering (GF)-based pre-processing technique on the CT images collected from the lung cancer database. Besides, they are fed into the normalized cuts (Ncuts) technique where the nodule in the pre-processed image can be determined. Moreover, the oriented FAST and rotated BRIEF (ORB) technique is applied as a feature extractor. At last, sunflower optimization-based wavelet neural network (SFO-WNN) model is employed for the classification of lung cancer. In order to examine the diagnostic outcome of the MLDS-LCDC model, a set of experiments were carried out and the results are investigated in terms of different aspects. The resultant values demonstrated the effectiveness of the MLDS-LCDC model over the other state-of-the-art methods with the maximum sensitivity of 97.01%, specificity of 98.64%, and accuracy of 98.11%.


2013 ◽  
Vol 2013 ◽  
pp. 1-46 ◽  
Author(s):  
Ayman El-Baz ◽  
Garth M. Beache ◽  
Georgy Gimel'farb ◽  
Kenji Suzuki ◽  
Kazunori Okada ◽  
...  

This paper overviews one of the most important, interesting, and challenging problems in oncology, the problem of lung cancer diagnosis. Developing an effectivecomputer-aided diagnosis(CAD) system for lung cancer is of great clinical importance and can increase the patient’s chance of survival. For this reason, CAD systems for lung cancer have been investigated in a huge number of research studies. A typical CAD system for lung cancer diagnosis is composed of four main processing steps: segmentation of the lung fields, detection of nodules inside the lung fields, segmentation of the detected nodules, and diagnosis of the nodules as benign or malignant. This paper overviews the current state-of-the-art techniques that have been developed to implement each of these CAD processing steps. For each technique, various aspects of technical issues, implemented methodologies, training and testing databases, and validation methods, as well as achieved performances, are described. In addition, the paper addresses several challenges that researchers face in each implementation step and outlines the strengths and drawbacks of the existing approaches for lung cancer CAD systems.


2018 ◽  
Vol 30 (1) ◽  
pp. 90 ◽  
Author(s):  
Peng Zhang ◽  
Xinnan Xu ◽  
Hongwei Wang ◽  
Yuanli Feng ◽  
Haozhe Feng ◽  
...  

2018 ◽  
Vol 238 (5) ◽  
pp. 395-421 ◽  
Author(s):  
Nicolas R. Ziebarth

Abstract This paper empirically investigates biased beliefs about the risks of smoking. First, it confirms the established tendency of people to overestimate the lifetime risk of a smoker to contract lung cancer. In this paper’s survey, almost half of all respondents overestimate this risk. However, 80% underestimate lung cancer deadliness. In reality, less than one in five patients survive five years after a lung cancer diagnosis. Due to the broad underestimation of the lung cancer deadliness, the lifetime risk of a smoker to die of lung cancer is underestimated by almost half of all respondents. Smokers who do not plan to quit are significantly more likely to underestimate this overall mortality risk.


Sign in / Sign up

Export Citation Format

Share Document