Interaction between local and distortional buckling modes in cold-formed steel members subjected to pure bending

Author(s):  
Jing Yin ◽  
Xiao Xiong Zha ◽  
Long Yuan Li
2014 ◽  
Vol 633-634 ◽  
pp. 1037-1041 ◽  
Author(s):  
Nikolay Vatin ◽  
Aleksei Sinelnikov ◽  
Marsel Garifullin ◽  
Darya Trubina

This article provides the numerical elastic buckling analysis of simply supported cold-formed lipped channels subjected to pure bending. A methodology for computing simulation of a new type of thin-walled thermo-profile (reticular-stretched) is developed. For flexural elements buckling modes and values of critical force are calculated. FE simulation evaluates the influence of web height and span on the critical load and buckling modes for cold formed beams of different lengths.


2019 ◽  
Vol 8 (4) ◽  
pp. 8409-8413

The use of cold-formed thin-walled steel structural members has increased in recent years. Especially, Cold-formed steel columns are widely used in the construction industry due to their lightweight, easy installation, erection and economy. The strength and efficiency of cold-formed steel profiles depends on the cross-sectional shape, which controls the three fundamental buckling modes: local, distortional and global. As most of their sections are open with only one symmetrical axis, they would likely fail by twisting and interacted with the other buckling modes such as local and distortional buckling. In order to improve the ultimate strength of columns, a built-up column section with distinct shape was selected from the detailed study of Literatures and three specimens of thickness 1.6mm were fabricated with different lengths 500mm, 600mm and 700mm. Consequently, buckling behaviour of built up steel members was investigated theoretically with Direct Strength Method (with the help of CuFSM) as well as experimentally and the results were compared with the buckling modes obtained numerically using ANSYS software and it is found that the ultimate load carrying capacity of the column increases with the decrease of slenderness ratio and finally a new innovative and economical column element was presented.


2019 ◽  
Vol 1 (6) ◽  
pp. 225-234
Author(s):  
Thiyagu K ◽  
Elanchezhiyan R ◽  
Kanaka P ◽  
Ganamanikarnika N

The use of cold-formed thin-walled steel structural members has increased in recent years. Especially, Cold-formed steel columns are widely used in the construction industry due to their lightweight, easy installation, erection and economy. The strength and efficiency of cold-formed steel profiles depends on the cross-sectional shape, which controls the three fundamental buckling modes: local, distortional and global. As most of their sections are open with only one symmetrical axis, they would likely fail by twisting and interacted with the other buckling modes such as local and distortional buckling. In order to improve the ultimate strength of columns, a built-up column section with distinct shape was selected from the detailed study of Literatures and three specimens of thickness 1.6mm were fabricated with different lengths 500mm, 600mm and 700mm. Consequently, buckling behaviour of built up steel members was investigated theoretically with Direct Strength Method (with the help of CuFSM) as well as experimentally and the results were compared with the buckling modes obtained numerically using ANSYS software and it is found that the ultimate load carrying capacity of the column increases with the decrease of slenderness ratio and finally a new innovative and economical column element was presented.


2015 ◽  
Vol 725-726 ◽  
pp. 697-702 ◽  
Author(s):  
Marsel Garifullin ◽  
Darya Trubina ◽  
Nikolai Vatin

Cold formed steel members with edge stiffened holes are a new generation of cold formed members recently developed by the building industry. Very little research has been performed on such sections to determine their local and distortional buckling capacity. This article provides the numerical results of elastic local buckling analysis of cold-formed lipped channels with edge stiffened holes. For flexural elements values of critical buckling moments are calculated and the influence of hole spacing and diameter on elastic buckling capacity is determined.


Sign in / Sign up

Export Citation Format

Share Document