Robust optimal placement of dampers in structures with set-back and eccentricity using sensitivity analysis for integrated transfer function

Author(s):  
Taito Kawamoto ◽  
Kohei Fujita ◽  
Masaaki Tsuji ◽  
Izuru Takewaki
Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1598
Author(s):  
Dongmin Kim ◽  
Kipo Yoon ◽  
Soo Hyoung Lee ◽  
Jung-Wook Park

The energy storage system (ESS) is developing into a very important element for the stable operation of power systems. An ESS is characterized by rapid control, free charging, and discharging. Because of these characteristics, it can efficiently respond to sudden events that affect the power system and can help to resolve congested lines caused by the excessive output of distributed generators (DGs) using renewable energy sources (RESs). In order to efficiently and economically install new ESSs in the power system, the following two factors must be considered: the optimal installation placements and the optimal sizes of ESSs. Many studies have explored the optimal installation placement and the sizing of ESSs by using analytical approaches, mathematical optimization techniques, and artificial intelligence. This paper presents an algorithm to determine the optimal installation placement and sizing of ESSs for a virtual multi-slack (VMS) operation based on a power sensitivity analysis in a stand-alone microgrid. Through the proposed algorithm, the optimal installation placement can be determined by a simple calculation based on a power sensitivity matrix, and the optimal sizing of the ESS for the determined placement can be obtained at the same time. The algorithm is verified through several case studies in a stand-alone microgrid based on practical power system data. The results of the proposed algorithm show that installing ESSs in the optimal placement could improve the voltage stability of the microgrid. The sizing of the newly installed ESS was also properly determined.


Author(s):  
Debao Li ◽  
Fangze Li ◽  
Peiming Xu

Abstract This paper deals with the dynamic modification simulation of the structure. The expressions of sensitivity analysis of the system with non-proportional damping and proportional damping are derived at first. As for the reanalysis of modified structure, here we deal with the system to which the modification do not cause any change of the degrees of freedom. Transfer function analysis method and the method of twice coordinate transformation are expounded. As a successful example, the modification simulation of the frame of a dump truck is explained.


2020 ◽  
Vol 18 (9) ◽  
pp. 706-710
Author(s):  
Zahra Zamini ◽  
Soroor Rahimi Khamaneh ◽  
Amin Jadidi ◽  
Babak Roshanipour

In this paper sensitivity of a multilayer graphene nanoribbon (MGNR) interconnects parameters investigated. System sensitivity was studied on parameters like length and width in stable condition. The obtained results show with increasing width and length sensitivity will decrease and increase respectively. Impulse response diagram results show with increasing 50% width sensitivity will be zero but with increasing 50% length amplitude will decrease and the time of setting will increase. On the other hand from step response of transfer function, both width and length increase cause more stability for a system but the width parameter will be better choices for manipulating the dimension of MLGNR to reach the stable system.


2004 ◽  
Vol 41 (02) ◽  
pp. 51-59
Author(s):  
Anna Ryrfeldt

In a previous work a methodology for assessing the risk of cargo shifting has been developed and used to study the influence of different parameters on the risk of cargo shifting. It has been found that ship rolling is one of the major contributing factors of cargo shifting. Linear theory of ship motions is presently used in the methodology because of computational efficiency and simplicity. Because the roll motion is complex and difficult to predict because of nonlinearities, the present study has been performed in order to study the influence of the roll motion on the risk of cargo shifting. This study may be seen as a sensitivity analysis of roll motion with respect to cargo shifting. The risk has been studied by the number of potentially dangerous conditions and how they depend on such parameters as wave height and period, and ship heading toward waves. The influence of roll amplitude and phase, as well as the influence of roll stabilizing devices, on the number of dangerous conditions is studied for two vessels and two load cases each. Roll amplitude influence is analyzed by changing the amplitude of the transfer function, and the results show that the influence of roll amplitude is very large. This influence is especially marked when the roll amplitude is large and the vertical and horizontal accelerations are small to moderate. The influence of roll stabilizing devices is studied by cutting of the resonance peak in the transfer functions. The results show that roll stabilizing is often efficient but that it can be more important to choose load case in order to attain good seakeeping characteristics, especially with respect to roll motion.


Sign in / Sign up

Export Citation Format

Share Document