scholarly journals Optimal Placement and Sizing of Energy Storage System Using Power Sensitivity Analysis in Practical Stand-Alone Microgrid

2021 ◽  
Author(s):  
Dongmin Kim ◽  
Kipo Yoon ◽  
Soo Hyoung ◽  
Lee Jung-Wook Park
Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1598
Author(s):  
Dongmin Kim ◽  
Kipo Yoon ◽  
Soo Hyoung Lee ◽  
Jung-Wook Park

The energy storage system (ESS) is developing into a very important element for the stable operation of power systems. An ESS is characterized by rapid control, free charging, and discharging. Because of these characteristics, it can efficiently respond to sudden events that affect the power system and can help to resolve congested lines caused by the excessive output of distributed generators (DGs) using renewable energy sources (RESs). In order to efficiently and economically install new ESSs in the power system, the following two factors must be considered: the optimal installation placements and the optimal sizes of ESSs. Many studies have explored the optimal installation placement and the sizing of ESSs by using analytical approaches, mathematical optimization techniques, and artificial intelligence. This paper presents an algorithm to determine the optimal installation placement and sizing of ESSs for a virtual multi-slack (VMS) operation based on a power sensitivity analysis in a stand-alone microgrid. Through the proposed algorithm, the optimal installation placement can be determined by a simple calculation based on a power sensitivity matrix, and the optimal sizing of the ESS for the determined placement can be obtained at the same time. The algorithm is verified through several case studies in a stand-alone microgrid based on practical power system data. The results of the proposed algorithm show that installing ESSs in the optimal placement could improve the voltage stability of the microgrid. The sizing of the newly installed ESS was also properly determined.


2020 ◽  
Vol 12 (9) ◽  
pp. 3577 ◽  
Author(s):  
Jon Martinez-Rico ◽  
Ekaitz Zulueta ◽  
Unai Fernandez-Gamiz ◽  
Ismael Ruiz de Argandoña ◽  
Mikel Armendia

Deep integration of renewable energies into the electricity grid is restricted by the problems related to their intermittent and uncertain nature. These problems affect both system operators and renewable power plant owners since, due to the electricity market rules, plants need to report their production some hours in advance and are, hence, exposed to possible penalties associated with unfulfillment of energy production. In this context, energy storage systems appear as a promising solution to reduce the stochastic nature of renewable sources. Furthermore, batteries can also be used for performing energy arbitrage, which consists in shifting energy and selling it at higher price hours. In this paper, a bidding optimization algorithm is used for enhancing profitability and minimizing the battery loss of value. The algorithm considers the participation in both day-ahead and intraday markets, and a sensitivity analysis is conducted to check the profitability variation related to prediction uncertainty. The obtained results highlight the importance of bidding in intraday markets to compensate the prediction errors and show that, for the Iberian Electricity Market, the uncertainty does not significantly affect the final benefits.


2020 ◽  
Vol 9 (6) ◽  
pp. 2222-2234
Author(s):  
Mohammed Salheen Alatshan ◽  
Ibrahim Alhamrouni ◽  
Tole Sutikno ◽  
Awang Jusoh

The major drivers of the quest for optimal placement of flexible alternating current transmission system (FACTS) devices are the quest for smart grids and economic indicators. The demand for energy and power stability will continue much as the astronomic growth in industries and increase in global population remains. The aim of this paper is to deliver a panoramic view of the use of static synchronous compensator (STATCOM) in combination with energy storage system (ESS) in order to enhance power stability. In this paper, it was observed that application of ESS is an important factor in attaining power stability and mitigating the effect of dynamics associated with the power supply system. The miniaturization of batteries and adequate placement of STATCOMs will be a challenge much as new power system are built or existing ones are expanded. The future of ESS is towards the adoption of renewable energy sources as against batteries. 


Author(s):  
Santoshkumar Hampannavar ◽  
Suresh Chavhan ◽  
Udaykumar Yaragatti ◽  
Anant Naik

Abstract Electric Vehicles (EV) can be connected to the grid for power transaction and also serve as distributed resource (DR) or distributed energy storage system (DESS). The concept of connecting group of EVs or gridable EVs (GEV) to the grid is called Vehicle-to-Grid (V2G). V2G is a prominent energy storage system as it is flexible and can be used to support the grid requirements in order to meet the time varying load demand. Optimal placement of GEV aggregation in power distribution network is very challenging and helps in maintaining stability of the power system for a shorter duration of time. In this paper, algorithm is developed for estimating parameters like Ploss, Qloss, Vpu based on past history and wireless access support for Control and Monitoring Unit (CMU) to aggregator agent communication is proposed using Long Term Evolution (LTE) protocol. The load flow studies are carried using MiPOWER software in order to obtain the optimal location for the placement of GEV aggregation in power distribution network. LTE physical layer is modeled using MATLAB/SIMULINK and the performance is analyzed using bit error rate (BER) v/s signal to noise ratio (SNR) curves.


2019 ◽  
Vol 21 ◽  
pp. 489-504 ◽  
Author(s):  
Ling Ai Wong ◽  
Vigna K. Ramachandaramurthy ◽  
Phil Taylor ◽  
J.B. Ekanayake ◽  
Sara L. Walker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document