Validation of the Eulerian pollution transport model PolTran on the Kincaid data set

2003 ◽  
Vol 20 (1/2/3/4/5/6) ◽  
pp. 105 ◽  
Author(s):  
Dimiter Atanassov
2009 ◽  
Vol 9 (1) ◽  
pp. 363-409 ◽  
Author(s):  
H. B. Singh ◽  
W. H. Brune ◽  
J. H. Crawford ◽  
F. Flocke ◽  
D. J. Jacob

Abstract. Intercontinental Chemical Transport Experiment-B (INTEX-B) was a major NASA1 led multi-partner atmospheric field campaign completed in the spring of 2006 (http://cloud1.arc.nasa.gov/intex-b/). Its major objectives aimed at (i) investigating the extent and persistence of the outflow of pollution from Mexico; (ii) understanding transport and evolution of Asian pollution and implications for air quality and climate across western North America; and (iii) validating space-borne observations of tropospheric composition. INTEX-B was performed in two phases. In its first phase (1–21 March), INTEX-B operated as part of the MILAGRO campaign with a focus on observations over Mexico and the Gulf of Mexico. In the second phase (17 April–15 May), the main INTEX-B focus was on the trans-Pacific Asian pollution transport. Multiple airborne platforms carrying state of the art chemistry and radiation payloads were flown in concert with satellites and ground stations during the two phases of INTEX-B. Validation of Aura satellite instruments (TES, OMI, MLS, HIRDLS) was a key objective within INTEX-B. Satellite products along with meteorological and 3-D chemical transport model forecasts were integrated into the flight planning process to allow targeted sampling of air parcels. Inter-comparisons were performed among and between aircraft payloads to quantify the accuracy of data and to create a unified data set. Pollution plumes were sampled over the Gulf of Mexico and the Pacific several days after downwind transport from source regions. Signatures of Asian pollution were routinely detected by INTEX-B aircraft, providing a comprehensive data set on gas and aerosol composition to test models and evaluate pathways of pollution transport and their impact on air quality and climate. This overview provides details about campaign implementation and a context within which the present and future INTEX-B/MILAGRO publications can be understood. 1 Acronyms are provided in Appendix A.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1552 ◽  
Author(s):  
Elvira Armenio ◽  
Mouldi Ben Meftah ◽  
Diana De Padova ◽  
Francesca De Serio ◽  
Michele Mossa

The present work aims at illustrating how the joint use of monitoring data and numerical models can be beneficial in understanding coastal processes. In the first part, we show and discuss an annual dataset provided by a monitoring system installed in a vulnerable coastal basin located in Southern Italy, subjected to human and industrial pressures. The collected data have been processed and analysed to detect the temporal evolution of the most representative parameters of the inspected site and have been compared with recordings from previous years to investigate recursive trends. In the second part, to demonstrate to what extent such type of monitoring actions is necessary and useful, the same data have been used to calibrate and run a 3D hydrodynamic model. After this, a reliable circulation pattern in the basin has been reproduced. Successively, an oil pollution transport model has been added to the hydrodynamic model, with the aim to present the response of the basin to some hypothetical cases of oil spills, caused by a ship failure. It is evident that the profitable prediction of the hydrodynamic processes and the transport and dispersion of contaminants strictly depends on the quality and reliability of the input data as well as on the calibration made.


2009 ◽  
Vol 9 (7) ◽  
pp. 2301-2318 ◽  
Author(s):  
H. B. Singh ◽  
W. H. Brune ◽  
J. H. Crawford ◽  
F. Flocke ◽  
D. J. Jacob

Abstract. Intercontinental Chemical Transport Experiment-B (INTEX-B) was a major NASA (Acronyms are provided in Appendix A.) led multi-partner atmospheric field campaign completed in the spring of 2006 (http://cloud1.arc.nasa.gov/intex-b/). Its major objectives aimed at (i) investigating the extent and persistence of the outflow of pollution from Mexico; (ii) understanding transport and evolution of Asian pollution and implications for air quality and climate across western North America; and (iii) validating space-borne observations of tropospheric composition. INTEX-B was performed in two phases. In its first phase (1–21 March), INTEX-B operated as part of the MILAGRO campaign with a focus on observations over Mexico and the Gulf of Mexico. In the second phase (17 April–15 May), the main INTEX-B focus was on trans-Pacific Asian pollution transport. Multiple airborne platforms carrying state of the art chemistry and radiation payloads were flown in concert with satellites and ground stations during the two phases of INTEX-B. Validation of Aura satellite instruments (TES, OMI, MLS, HIRDLS) was a key objective within INTEX-B. Satellite products along with meteorological and 3-D chemical transport model forecasts were integrated into the flight planning process to allow targeted sampling of air parcels. Inter-comparisons were performed among and between aircraft payloads to quantify the accuracy of data and to create a unified data set. Pollution plumes were sampled over the Gulf of Mexico and the Pacific several days after downwind transport from source regions. Signatures of Asian pollution were routinely detected by INTEX-B aircraft, providing a valuable data set on gas and aerosol composition to test models and evaluate pathways of pollution transport and their impact on air quality and climate. This overview provides details about campaign implementation and a context within which the present and future INTEX-B/MILAGRO publications can be understood.


Sign in / Sign up

Export Citation Format

Share Document