Desilication of calcined pulverised fly ash and use of silicate solution to prepare a mesoporous silica adsorbent for heavy metals in acid mine drainage

Author(s):  
Thabo Falayi ◽  
Felix Ndubisi Okonta ◽  
Freeman Ntuli
Water SA ◽  
2019 ◽  
Vol 45 (4 October) ◽  
Author(s):  
AN Shabalala ◽  
SO Ekolu

In this paper, a batch experiment was conducted to evaluate the water quality obtained from using pervious concrete (PERVC) technology to treat acid mine drainage (AMD). The study proposes an innovative application of PERVC as a permeable reactive barrier liner in evaporation ponds. The effectiveness of PERVC adsorbent in removing heavy metals was compared with that of zero-valent iron (ZVI) of particle size 1.0 to 1.8 mm. The AMD used in the study was obtained from abandoned gold and coal mines. PERVC mixtures consisted of granite aggregate and ordinary Portland cement CEM I 52.5R (CEM I) or CEM I containing Class F 30% fly ash (30%FA) as a cement replacement material. ZVI was prepared from a mixture of silica sand and iron grit of specific sizes. PERVC and ZVI media were used to conduct batch reactor tests with AMD, for a period of 43 days at a ratio of 1 L of reactive material to 3 L of AMD. The quality of treated AMD was compared against effluent discharge standards. The contaminants Al, Fe and Zn were effectively removed by both PERVC and ZVI. Also, both adsorbents reduced Ni, Co and Cu to levels below those measured in raw AMD. However, PERVC was more effective in removing Mn and Mg while ZVI was ineffective. Although PERVC removed more heavy metals and with greater efficiency than ZVI, the PERVC-treated water showed high pH levels and exhibited elevated Cr6+ concentrations, owing to leaching from the cement and fly ash materials used in PERVC mixtures.


2021 ◽  
Vol 11 (9) ◽  
pp. 3910
Author(s):  
Saba Shirin ◽  
Aarif Jamal ◽  
Christina Emmanouil ◽  
Akhilesh Kumar Yadav

Acid mine drainage (AMD) occurs naturally in abandoned coal mines, and it contains hazardous toxic elements in varying concentrations. In the present research, AMD samples collected from an abandoned mine were treated with fly ash samples from four thermal power plants in Singrauli Coalfield in the proximate area, at optimized concentrations. The AMD samples were analyzed for physicochemical parameters and metal content before and after fly ash treatment. Morphological, geochemical and mineralogical characterization of the fly ash was performed using SEM, XRF and XRD. This laboratory-scale investigation indicated that fly ash had appreciable neutralization potential, increasing AMD pH and decreasing elemental and sulfate concentrations. Therefore, fly ash may be effectively used for AMD neutralization, and its suitability for the management of coalfield AMD pits should be assessed further.


2012 ◽  
Vol 610-613 ◽  
pp. 3252-3256
Author(s):  
Mei Qin Chen ◽  
Feng Ji Wu

Acid mine drainage (AMD) has properties of extreme acidification, quantities of sulfate and elevated levels of soluble heavy metals. It was a widespread environmental problem that caused adverse effects to the qualities of ground water and surface water. In the past decades, most of investigations were focused on the heavy metals as their toxicities for human and animals. As another main constitution of AMD, sulfate ion is nontoxic, yet high concentration of sulfate ion can cause many problems such as soil acidification, metal corrosion and health problems. More attention should be paid on the sulfate ion when people focus on the AMD. In the paper, sulfate removal mechanisms include adsorption, precipitation, co-precipitation and biological reduction were analyzed and summarized. Meanwhile, the remediation technologies, especially the applications of them in China were also presented and discussed.


2019 ◽  
Vol 538 ◽  
pp. 132-141 ◽  
Author(s):  
Guorui Feng ◽  
Jianchao Ma ◽  
Xiaopeng Zhang ◽  
Qingfang Zhang ◽  
Yuqiang Xiao ◽  
...  

2010 ◽  
Vol 106 (1/2) ◽  
Author(s):  
Wicleffe Musingarimi ◽  
Marla Tuffin ◽  
Donald Cowan

An arsenic resistant Bacillus sp. UWC was isolated from fly ash acid mine drainage (FA-AMD) neutralised solids. A genomic library was prepared and screened in an arsenic sensitive mutant Escherichia coli strain for the presence of arsenic resistance (ars) genes. Sequence analysis of a clone conferring resistance to both sodium arsenite and sodium arsenate revealed homologues to the arsR (regulatory repressor), arsB (membrane located arsenite pump), arsC (arsenate reductase), arsD (second regulatory repressor and a metallochaperone) and arsA (ATPase) genes from known arsenic resistance operons. The Bacillus sp. UWC arsRBCDA genes were shown to be arranged in an unusual manner with the arsDA genes immediately downstream of arsC.


Sign in / Sign up

Export Citation Format

Share Document