Hybrid decision support system using PLSR-fuzzy model for GSM-based site-specific irrigation notification and control in precision agriculture

Author(s):  
Ambarish G. Mohapatra ◽  
Saroj Kumar Lenka
2007 ◽  
Vol 50 (4) ◽  
pp. 1467-1479 ◽  
Author(s):  
K. R. Thorp ◽  
W. D. Batchelor ◽  
J. O. Paz ◽  
A. L. Kaleita ◽  
K. C. DeJonge

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1693
Author(s):  
Chanchan Du ◽  
Lixin Zhang ◽  
Xiao Ma ◽  
Xiaokang Lou ◽  
Yongchao Shan ◽  
...  

Scientific researchers have applied newly developed technologies, such as sensors and actuators, to different fields, including environmental monitoring, traffic management, and precision agriculture. Using agricultural technology to assist crop fertilization is an important research innovation that can not only reduce the workload of farmers, but also reduce resource waste and soil pollution. This paper describes the design and development of a water-fertilizer control system based on the soil conductivity threshold. The system uses a low-cost wireless sensor network as a data collection and transmission tool and transmits the data to the decision support system. The decision support system considers the change in soil electrical conductivity (EC) and moisture content to guide the application of water-fertilizer, and then improves the fertilization accuracy of the water-fertilizer control system. In the experiment, the proposed water-fertilizer control system was tested, and it was concluded that, compared with the existing traditional water-fertilizer integration control system, the amount of fertilizer used by the system was reduced by 10.89% on average, and it could save 0.76–0.87 tons of fertilizer throughout the whole growth period of cotton.


2018 ◽  
Vol 103 ◽  
pp. 72-85 ◽  
Author(s):  
Alessandro Tufano ◽  
Riccardo Accorsi ◽  
Federica Garbellini ◽  
Riccardo Manzini

2006 ◽  
Vol 54 (11-12) ◽  
pp. 11-19 ◽  
Author(s):  
M. Aqil ◽  
I. Kita ◽  
A. Yano ◽  
S. Nishiyama

It is widely accepted that an efficient flood alarm system may significantly improve public safety and mitigate economical damages caused by inundations. In this paper, a modified adaptive neuro-fuzzy system is proposed to modify the traditional neuro-fuzzy model. This new method employs a rule-correction based algorithm to replace the error back propagation algorithm that is employed by the traditional neuro-fuzzy method in backward pass calculation. The final value obtained during the backward pass calculation using the rule-correction algorithm is then considered as a mapping function of the learning mechanism of the modified neuro-fuzzy system. Effectiveness of the proposed identification technique is demonstrated through a simulation study on the flood series of the Citarum River in Indonesia. The first four-year data (1987 to 1990) was used for model training/calibration, while the other remaining data (1991 to 2002) was used for testing the model. The number of antecedent flows that should be included in the input variables was determined by two statistical methods, i.e. autocorrelation and partial autocorrelation between the variables. Performance accuracy of the model was evaluated in terms of two statistical indices, i.e. mean average percentage error and root mean square error. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach, and evolving graphical features, and can be adopted for any similar situation to predict the streamflow. The main data processing includes gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood data, to train/test the model using various input options, and to visualize results. The program code consists of a set of files, which can be modified as well to match other purposes. This program may also serve as a tool for real-time flood monitoring and process control. The results indicate that the modified neuro-fuzzy model applied to the flood prediction seems to have reached encouraging results for the river basin under examination. The comparison of the modified neuro-fuzzy predictions with the observed data was satisfactory, where the error resulted from the testing period was varied between 2.632% and 5.560%. Thus, this program may also serve as a tool for real-time flood monitoring and process control.


Sign in / Sign up

Export Citation Format

Share Document