Robust feature selection algorithm based on transductive SVM wrapper and genetic algorithm: application on computer-aided glaucoma classification

Author(s):  
Amira S. Ashour ◽  
Nilanjan Dey ◽  
Soraya Cheriguene ◽  
Djamel Zenakhra ◽  
Mokhtar Sellami ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Ahmed I. Sharaf ◽  
Mohamed Abu El-Soud ◽  
Ibrahim M. El-Henawy

Detection of epileptic seizures using an electroencephalogram (EEG) signals is a challenging task that requires a high level of skilled neurophysiologists. Therefore, computer-aided detection provides an asset to the neurophysiologist in interpreting the EEG. This paper introduces a novel approach to recognize and classify the epileptic seizure and seizure-free EEG signals automatically by an intelligent computer-aided method. Moreover, the prediction of the preictal phase of the epilepsy is proposed to assist the neurophysiologist in the clinic. The proposed method presents two perspectives for the EEG signal processing to detect and classify the seizures and seizure-free signals. The first perspectives consider the EEG signal as a nonlinear time series. A tunable Q-wavelet is applied to decompose the signal into smaller segments called subbands. Then a chaotic, statistical, and power spectrum features sets are extracted from each subband. The second perspectives process the EEG signal as an image; hence the gray-level co-occurrence matrix is determined from the image to obtain the textures of contrast, correlation, energy, and homogeneity. Due to a large number of features obtained, a feature selection algorithm based on firefly optimization was applied. The firefly optimization reduces the original set of features and generates a reduced compact set. A random forest classifier is trained for the classification and prediction of the seizures and seizure-free signals. Afterward, a dataset from the University of Bonn, Germany, is used for benchmarking and evaluation. The proposed approach provided a significant result compared with other recent work regarding accuracy, recall, specificity, F-measure, and Matthew’s correlation coefficient.


2006 ◽  
Vol 15 (06) ◽  
pp. 893-915 ◽  
Author(s):  
JIANG LI ◽  
JIANHUA YAO ◽  
RONALD M. SUMMERS ◽  
NICHOLAS PETRICK ◽  
MICHAEL T. MANRY ◽  
...  

We present an efficient feature selection algorithm for computer aided detection (CAD) computed tomographic (CT) colonography. The algorithm (1) determines an appropriate piecewise linear network (PLN) model by cross validation, (2) applies the orthonormal least square (OLS) procedure to the PLN model utilizing a Modified Schmidt procedure, and (3) uses a floating search algorithm to select features that minimize the output variance. The undesirable "nesting effect" is prevented by the floating search approach, and the piecewise linear OLS procedure makes this algorithm very computationally efficient because the Modified Schmidt procedure only requires one data pass during the whole searching process. The selected features are compared to those obtained by other methods, through cross validation with support vector machines (SVMs).


Sign in / Sign up

Export Citation Format

Share Document