Selection of the most appropriate underground mining method for Sareke copper mine

2016 ◽  
Vol 7 (4) ◽  
pp. 281
Author(s):  
Sammy O. Ombiro
Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 192 ◽  
Author(s):  
Sanja Bajić ◽  
Dragoljub Bajić ◽  
Branko Gluščević ◽  
Vesna Ristić Vakanjac

The paper proposes a problem-solving approach in the area of underground mining, related to the evaluation and selection of the optimal mining method, employing fuzzy multiple-criteria optimization. The application of fuzzy logic to decision-making in multiple-criteria optimization is particularly useful in cases where not enough information is available about a given system, and where expert knowledge and experience are an important aspect. With a straightforward objective, multiple-criteria decision-making is used to rank various mining methods relative to a set of criteria and to select the optimal solution. The considered mining methods represent possible alternatives. In addition, various criteria and subcriteria that influence the selection of the best available solution are defined and analyzed. The final decision concerning the selection of the optimal mining method is made based on mathematical optimization calculations. The paper demonstrates the proposed approach as applied in a case study.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Phu Minh Vuong Nguyen ◽  
Tomasz Olczak ◽  
Sywester Rajwa

Abstract It is well-known that the longwall mining method (with roof caving) is widely used in underground mining extraction for bedded deposits (e.g. coal) due to its numerous advantages. Generally, this method is not commonly applied for ore deposits such as copper deposit. In Poland, the longwall mining method has been tested for thin copper deposits at the Polkowice-Sieroszowice copper mine (KGHM). Various failure modes were observed during longwall operation in the 5A/1 panel. This paper aims to examine these occurred failures. To do so, an analysis has been conducted using 3D numerical modelling to investigate the failure mode and mechanism. Based on the 3D numerical modelling results with extensive in situ measurements, causes of failure are determined and practical recommendations for further copper longwall operations are presented.


Sign in / Sign up

Export Citation Format

Share Document