Non-linear observer of laminar flame speed for multi-fuel adaptive spark-ignition engines

2014 ◽  
Vol 3 (2) ◽  
pp. 154 ◽  
Author(s):  
Baitao Xiao ◽  
Robert Prucka
2017 ◽  
Vol 18 (9) ◽  
pp. 951-970 ◽  
Author(s):  
Riccardo Amirante ◽  
Elia Distaso ◽  
Paolo Tamburrano ◽  
Rolf D Reitz

The laminar flame speed plays an important role in spark-ignition engines, as well as in many other combustion applications, such as in designing burners and predicting explosions. For this reason, it has been object of extensive research. Analytical correlations that allow it to be calculated have been developed and are used in engine simulations. They are usually preferred to detailed chemical kinetic models for saving computational time. Therefore, an accurate as possible formulation for such expressions is needed for successful simulations. However, many previous empirical correlations have been based on a limited set of experimental measurements, which have been often carried out over a limited range of operating conditions. Thus, it can result in low accuracy and usability. In this study, measurements of laminar flame speeds obtained by several workers are collected, compared and critically analyzed with the aim to develop more accurate empirical correlations for laminar flame speeds as a function of equivalence ratio and unburned mixture temperature and pressure over a wide range of operating conditions, namely [Formula: see text], [Formula: see text] and [Formula: see text]. The purpose is to provide simple and workable expressions for modeling the laminar flame speed of practical fuels used in spark-ignition engines. Pure compounds, such as methane and propane and binary mixtures of methane/ethane and methane/propane, as well as more complex fuels including natural gas and gasoline, are considered. A comparison with available empirical correlations in the literature is also provided.


Author(s):  
Sebastian Verhelst ◽  
Roger Sierens

During the development of a quasi-dimensional simulation programme for the combustion of hydrogen in spark-ignition engines, the lack of a suitable laminar flame speed formula for hydrogen/air mixtures became apparent. A literature survey shows that none of the existing correlations covers the entire temperature, pressure and mixture composition range as encountered in spark-ignition engines. Moreover, there is ambiguity concerning the pressure dependence of the laminar burning velocity of hydrogen/air mixtures. Finally, no data exists on the influence of residual gases. This paper looks at several reaction mechanisms found in the literature for the kinetics of hydrogen/oxygen mixtures, after which one is selected that corresponds best with available experimental data. An extensive set of simulations with a one-dimensional chemical kinetics code is performed to calculate the laminar flame speed of hydrogen/air mixtures, in a wide range of mixture compositions and initial pressures and temperatures. The use of a chemical kinetics code permits the calculation of any desired set of conditions and enables the estimation of interactions, e.g. between pressure and temperature effects. Finally, a laminar burning velocity correlation is presented, valid for air-to-fuel equivalence ratios λ between 1 and 3 (fuel-to-air equivalence ratio 0.33 < φ < 1), initial pressures between 1 bar and 16 bar, initial temperatures between 300 K and 800 K and residual gas fractions up to 30 vol%. These conditions are sufficient to cover the entire operating range of hydrogen fuelled spark-ignition engines.


2014 ◽  
Vol 130 ◽  
pp. 166-180 ◽  
Author(s):  
Emanuele Fanelli ◽  
Annarita Viggiano ◽  
Giacobbe Braccio ◽  
Vinicio Magi

2018 ◽  
Vol 148 ◽  
pp. 631-638 ◽  
Author(s):  
L. Teodosio ◽  
F. Bozza ◽  
D. Tufano ◽  
P. Giannattasio ◽  
E. Distaso ◽  
...  

2017 ◽  
Vol 2 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Cangsu Xu ◽  
Anhao Zhong ◽  
Chongming Wang ◽  
Chaozhao Jiang ◽  
Xiaolu Li ◽  
...  

AbstractLaser-induced spark-ignition (LISI) has an advanced ignition technique with a few benefits over spark ignition. In this study, flame morphology, laminar flame characteristics and combustion characteristics of premixed anhydrous ethanol and air mixtures were investigated using LISI generated by a Q-switched Nd: YAG laser (wavelength: 1064 nm). Experiments were conducted in a constant volume combustion chamber (CVCC) at the initial condition of T0=358 K and P0=0.1 MPa, respectively, and with equivalence ratios (ɸ) of 0.6-1.6. Flame images were recorded by using the high-speed Schlieren photography technique, and the in-vessel pressure was recorded using a piezoelectric pressure transducer. Tests were also carried out with spark ignition, and the results were used as a reference. It has been found that the laminar flame speed of ethanol-air mixtures with LISI was comparable with those of spark ignition, proving that ignition methods have no influence on laminar flame speed which is an inherent characteristic of a fuel-air mixture. The peak laminar burning velocities for LISI and spark ignition with nonlinear extrapolation methods were approximately 50 cm/s at ɸ=1.1. However, LISI was able to ignite leaner mixtures than spark ignition. The maximum pressure rise rate of LISI was consistently higher than that of spark ignition at all tested ɸ, although the maximum pressure was similar for LISI and spark ignition. The initial combustion duration and main combustion duration reached the minimum at ɸ=1.1.


Sign in / Sign up

Export Citation Format

Share Document