scholarly journals Tensile and fatigue failure of 3D printed parts with continuous fibre reinforcement

2017 ◽  
Vol 6 (2/3) ◽  
pp. 97 ◽  
Author(s):  
Hadley Brooks ◽  
Dana Tyas ◽  
Samuel Molony
2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Alisdair R. MacLeod ◽  
Nicholas Peckham ◽  
Gil Serrancolí ◽  
Ines Rombach ◽  
Patrick Hourigan ◽  
...  

Abstract Background Despite favourable outcomes relatively few surgeons offer high tibial osteotomy (HTO) as a treatment option for early knee osteoarthritis, mainly due to the difficulty of achieving planned correction and reported soft tissue irritation around the plate used to stablise the osteotomy. To compare the mechanical safety of a new personalised 3D printed high tibial osteotomy (HTO) device, created to overcome these issues, with an existing generic device, a case-control in silico virtual clinical trial was conducted. Methods Twenty-eight knee osteoarthritis patients underwent computed tomography (CT) scanning to create a virtual cohort; the cohort was duplicated to form two arms, Generic and Personalised, on which virtual HTO was performed. Finite element analysis was performed to calculate the stresses in the plates arising from simulated physiological activities at three healing stages. The odds ratio indicative of the relative risk of fatigue failure of the HTO plates between the personalised and generic arms was obtained from a multi-level logistic model. Results Here we show, at 12 weeks post-surgery, the odds ratio indicative of the relative risk of fatigue failure was 0.14 (95%CI 0.01 to 2.73, p = 0.20). Conclusions This novel (to the best of our knowledge) in silico trial, comparing the mechanical safety of a new personalised 3D printed high tibial osteotomy device with an existing generic device, shows that there is no increased risk of failure for the new personalised design compared to the existing generic commonly used device. Personalised high tibial osteotomy can overcome the main technical barriers for this type of surgery, our findings support the case for using this technology for treating early knee osteoarthritis.


2018 ◽  
Vol 184 ◽  
pp. 1005-1010 ◽  
Author(s):  
Zhanghao Hou ◽  
Xiaoyong Tian ◽  
Junkang Zhang ◽  
Dichen Li

2021 ◽  
Author(s):  
MATHEW JOOSTEN ◽  
ZI LI ◽  
CHENG HUANG

At Deakin University we have been researching the performance of continuous fibre 3D printed composite structures and a summary of three research activities related to this research theme are provided herein. 3D printed continuous fibre composites can be used to realise significant gains in stiffness and strength compared to an equivalent component fabricated using a neat thermoplastic. To investigate the performance of these materials both commercially available and customised printers were used to fabricate composite laminates and the behaviour of these laminates evaluated experimentally. Finite element and analytical models were used to predict the mechanical response. These approaches were originally developed for thermoset matrices, however, the models have shown to be capable of predicting the behaviour of 3D printed carbon fibre and hybrid carbon-fibreglass thermoplastic composites. These validated models can be used to generate design charts to identify feasible UD and semi-woven textile architectures, thereby, allowing designers to tailor the ply architecture and stacking sequence to meet specific design requirements.


Sign in / Sign up

Export Citation Format

Share Document