Communications Medicine
Latest Publications


TOTAL DOCUMENTS

68
(FIVE YEARS 68)

H-INDEX

1
(FIVE YEARS 1)

Published By Springer Science And Business Media LLC

2730-664x

2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Long T. Nguyen ◽  
Santosh R. Rananaware ◽  
Brianna L. M. Pizzano ◽  
Brandon T. Stone ◽  
Piyush K. Jain

Abstract Background The coronavirus disease (COVID-19) caused by SARS-CoV-2 has swept through the globe at an unprecedented rate. CRISPR-based detection technologies have emerged as a rapid and affordable platform that can shape the future of diagnostics. Methods We developed ENHANCEv2 that is composed of a chimeric guide RNA, a modified LbCas12a enzyme, and a dual reporter construct to improve the previously reported ENHANCE system. We validated both ENHANCE and ENHANCEv2 using 62 nasopharyngeal swabs and compared the results to RT-qPCR. We created a lyophilized version of ENHANCEv2 and characterized its detection capability and stability. Results Here we demonstrate that when coupled with an RT-LAMP step, ENHANCE detects COVID-19 samples down to a few copies with 95% accuracy while maintaining a high specificity towards various isolates of SARS-CoV-2 against 31 highly similar and common respiratory pathogens. ENHANCE works robustly in a wide range of magnesium concentrations (3 mM-13 mM), allowing for further assay optimization. Our clinical validation results for both ENHANCE and ENHANCEv2 show 60/62 (96.7%) sample agreement with RT-qPCR results while only using 5 µL of sample and 20 minutes of CRISPR reaction. We show that the lateral flow assay using paper-based strips displays 100% agreement with the fluorescence-based reporter assay during clinical validation. Finally, we demonstrate that a lyophilized version of ENHANCEv2 shows high sensitivity and specificity for SARS-CoV-2 detection while reducing the CRISPR reaction time to as low as 3 minutes while maintaining its detection capability for several weeks upon storage at room temperature. Conclusions CRISPR-based diagnostic platforms offer many advantages as compared to conventional qPCR-based detection methods. Our work here provides clinical validation of ENHANCE and its improved form ENHANCEv2 for the detection of COVID-19.


2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Harrie F. G. van Dijk ◽  
Henri A. Verbrugh ◽  
Tjakko Abee ◽  
Jan Willem Andriessen ◽  
Harrie F. G. van Dijk ◽  
...  

2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Olga Kostopoulou ◽  
Kavleen Arora ◽  
Bence Pálfi

Abstract Background Cancer risk algorithms were introduced to clinical practice in the last decade, but they remain underused. We investigated whether General Practitioners (GPs) change their referral decisions in response to an unnamed algorithm, if decisions improve, and if changing decisions depends on having information about the algorithm and on whether GPs overestimated or underestimated risk. Methods 157 UK GPs were presented with 20 vignettes describing patients with possible colorectal cancer symptoms. GPs gave their risk estimates and inclination to refer. They then saw the risk score of an unnamed algorithm and could update their responses. Half of the sample was given information about the algorithm’s derivation, validation, and accuracy. At the end, we measured their algorithm disposition. We analysed the data using multilevel regressions with random intercepts by GP and vignette. Results We find that, after receiving the algorithm’s estimate, GPs’ inclination to refer changes 26% of the time and their decisions switch entirely 3% of the time. Decisions become more consistent with the NICE 3% referral threshold (OR 1.45 [1.27, 1.65], p < .001). The algorithm’s impact is greatest when GPs have underestimated risk. Information about the algorithm does not have a discernible effect on decisions but it results in a more positive GP disposition towards the algorithm. GPs’ risk estimates become better calibrated over time, i.e., move closer to the algorithm. Conclusions Cancer risk algorithms have the potential to improve cancer referral decisions. Their use as learning tools to improve risk estimates is promising and should be further investigated.


2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Claude Saegerman ◽  
Anh Nguyet Diep ◽  
Véronique Renault ◽  
Anne-Françoise Donneau ◽  
Lambert Stamatakis ◽  
...  

Abstract Background Nursing home (NH) residents have been severely affected during the COVID-19 pandemic because of their age and underlying comorbidities. Infection and outbreaks in NHs are most likely triggered by infected workers. Screening for asymptomatic NH workers can prevent risky contact and viral transmission to the residents. This study examined the effect of the BNT162b2 mRNA COVID‑19 (Comirnaty®; BioNTech and Pfizer) vaccination on the saliva excretion of SARS-CoV-2 among NH workers, through weekly saliva RT-qPCR testing. Methods A 2-month cohort study was conducted among 99 NHs in the Walloon region (Belgium), at the start of February 2021. Three groups of workers, i.e., non-vaccinated (n = 1618), one-dosed vaccinated (n = 1454), and two-dosed vaccinated (n = 2379) of BNT162b2 mRNA COVID‑19 vaccine, were followed-up weekly. Their saliva samples were used to monitor the shedding of SARS-CoV-2. All positive samples were sequenced and genotyped to identify the circulating wild-type virus or variants of concern. Results The protection fraction against the excretion of the SARS-CoV-2 in the saliva samples of the workers after the second dose is estimated at 0.90 (95% CI: 0.18; 0.99) at 1 week and 0.83 (95% CI: 0.54; 0.95) at 8 weeks. We observe more circulating SARS-CoV-2 and a greater variability of viral loads in the unvaccinated group compared to those of the vaccinated group. Conclusions This field cohort study advances our knowledge of the efficacy of the mRNA BNT162b2 COVID-19 vaccine on the viral shedding in the saliva specimens of vaccinated NH workers, contributing to better decision-making in public health interventions and management.


2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Kevin M. Blum ◽  
Jacob C. Zbinden ◽  
Abhay B. Ramachandra ◽  
Stephanie E. Lindsey ◽  
Jason M. Szafron ◽  
...  

Abstract Background Tissue-engineered vascular grafts (TEVGs) have the potential to advance the surgical management of infants and children requiring congenital heart surgery by creating functional vascular conduits with growth capacity. Methods Herein, we used an integrative computational-experimental approach to elucidate the natural history of neovessel formation in a large animal preclinical model; combining an in vitro accelerated degradation study with mechanical testing, large animal implantation studies with in vivo imaging and histology, and data-informed computational growth and remodeling models. Results Our findings demonstrate that the structural integrity of the polymeric scaffold is lost over the first 26 weeks in vivo, while polymeric fragments persist for up to 52 weeks. Our models predict that early neotissue accumulation is driven primarily by inflammatory processes in response to the implanted polymeric scaffold, but that turnover becomes progressively mechano-mediated as the scaffold degrades. Using a lamb model, we confirm that early neotissue formation results primarily from the foreign body reaction induced by the scaffold, resulting in an early period of dynamic remodeling characterized by transient TEVG narrowing. As the scaffold degrades, mechano-mediated neotissue remodeling becomes dominant around 26 weeks. After the scaffold degrades completely, the resulting neovessel undergoes growth and remodeling that mimicks native vessel behavior, including biological growth capacity, further supported by fluid–structure interaction simulations providing detailed hemodynamic and wall stress information. Conclusions These findings provide insights into TEVG remodeling, and have important implications for clinical use and future development of TEVGs for children with congenital heart disease.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Chin-Fu Liu ◽  
Johnny Hsu ◽  
Xin Xu ◽  
Sandhya Ramachandran ◽  
Victor Wang ◽  
...  

Abstract Background Accessible tools to efficiently detect and segment diffusion abnormalities in acute strokes are highly anticipated by the clinical and research communities. Methods We developed a tool with deep learning networks trained and tested on a large dataset of 2,348 clinical diffusion weighted MRIs of patients with acute and sub-acute ischemic strokes, and further tested for generalization on 280 MRIs of an external dataset (STIR). Results Our proposed model outperforms generic networks and DeepMedic, particularly in small lesions, with lower false positive rate, balanced precision and sensitivity, and robustness to data perturbs (e.g., artefacts, low resolution, technical heterogeneity). The agreement with human delineation rivals the inter-evaluator agreement; the automated lesion quantification of volume and contrast has virtually total agreement with human quantification. Conclusion Our tool is fast, public, accessible to non-experts, with minimal computational requirements, to detect and segment lesions via a single command line. Therefore, it fulfills the conditions to perform large scale, reliable and reproducible clinical and translational research.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Jacob J. Mayfield ◽  
Neal A. Chatterjee ◽  
Peter A. Noseworthy ◽  
Jeanne E. Poole ◽  
Michael J. Ackerman ◽  
...  

Abstract Background The coronavirus disease 2019 (COVID-19) pandemic has challenged researchers performing clinical trials to develop innovative approaches to mitigate infectious risk while maintaining rigorous safety monitoring. Methods In this report we describe the implementation of a novel exclusively remote randomized clinical trial (ClinicalTrials.gov NCT04354428) of hydroxychloroquine and azithromycin for the treatment of the SARS-CoV-2–mediated COVID-19 disease which included cardiovascular safety monitoring. All study activities were conducted remotely. Self-collected vital signs (temperature, respiratory rate, heart rate, and oxygen saturation) and electrocardiographic (ECG) measurements were transmitted digitally to investigators while mid-nasal swabs for SARS-CoV-2 testing were shipped. ECG collection relied on a consumer device (KardiaMobile 6L, AliveCor Inc.) that recorded and transmitted six-lead ECGs via participants’ internet-enabled devices to a central core laboratory, which measured and reported QTc intervals that were then used to monitor safety. Results Two hundred and thirty-one participants uploaded 3245 ECGs. Mean daily adherence to the ECG protocol was 85.2% and was similar to the survey and mid-nasal swab elements of the study. Adherence rates did not differ by age or sex assigned at birth and were high across all reported race and ethnicities. QTc prolongation meeting criteria for an adverse event occurred in 28 (12.1%) participants, with 2 occurring in the placebo group, 19 in the hydroxychloroquine group, and 7 in the hydroxychloroquine + azithromycin group. Conclusions Our report demonstrates that digital health technologies can be leveraged to conduct rigorous, safe, and entirely remote clinical trials.


Sign in / Sign up

Export Citation Format

Share Document