Optimal mobile robot path planning in the presence of moving obstacles

2018 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Adriano Zanin Zambom
Author(s):  
Waqar A. Malik ◽  
Jae-Yong Lee ◽  
Sooyong Lee

Mobile robots are increasingly being used to do tasks in unknown environment. The potential of robots to undertake such tasks lies on their ability to intelligently and efficiently locate and interact with objects in their environment. This paper describes a novel method to plan paths for mobile robots in a partially known environment observed by an overhead camera. The environment consists of dynamic obstacles and targets. A new methodology, Extrapolated Artificial Potential Field is proposed for real time robot path planning. The proposed Extrapolated Artificial Potential Field is capable of navigating robots situated among moving obstacles and target. An algorithm for probabilistic collision detection is introduced. The paper summarizes this approach, and discusses the results of path planning experiments using an Amigobot. The result shows that our method is effective.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110192
Author(s):  
Songcan Zhang ◽  
Jiexin Pu ◽  
Yanna Si ◽  
Lifan Sun

Path planning of mobile robots in complex environments is the most challenging research. A hybrid approach combining the enhanced ant colony system with the local optimization algorithm based on path geometric features, called EACSPGO, has been presented in this study for mobile robot path planning. Firstly, the simplified model of pheromone diffusion, the pheromone initialization strategy of unequal allocation, and the adaptive pheromone update mechanism have been simultaneously introduced to enhance the classical ant colony algorithm, thus providing a significant improvement in the computation efficiency and the quality of the solutions. A local optimization method based on path geometric features has been designed to further optimize the initial path and achieve a good convergence rate. Finally, the performance and advantages of the proposed approach have been verified by a series of tests in the mobile robot path planning. The simulation results demonstrate that the presented EACSPGO approach provides better solutions, adaptability, stability, and faster convergence rate compared to the other tested optimization algorithms.


Sign in / Sign up

Export Citation Format

Share Document