Adaptive domain-decomposition methods for two-dimensional, time-dependent reaction-diffusion equations in nongraded meshes

Author(s):  
E. Soler ◽  
J.I. Ramos
2020 ◽  
Vol 18 (1) ◽  
pp. 1552-1564
Author(s):  
Huimin Tian ◽  
Lingling Zhang

Abstract In this paper, the blow-up analyses in nonlocal reaction diffusion equations with time-dependent coefficients are investigated under Neumann boundary conditions. By constructing some suitable auxiliary functions and using differential inequality techniques, we show some sufficient conditions to ensure that the solution u ( x , t ) u(x,t) blows up at a finite time under appropriate measure sense. Furthermore, an upper and a lower bound on blow-up time are derived under some appropriate assumptions. At last, two examples are presented to illustrate the application of our main results.


2018 ◽  
Vol 52 (4) ◽  
pp. 1569-1596 ◽  
Author(s):  
Xavier Antoine ◽  
Fengji Hou ◽  
Emmanuel Lorin

This paper is devoted to the analysis of convergence of Schwarz Waveform Relaxation (SWR) domain decomposition methods (DDM) for solving the stationary linear and nonlinear Schrödinger equations by the imaginary-time method. Although SWR are extensively used for numerically solving high-dimensional quantum and classical wave equations, the analysis of convergence and of the rate of convergence is still largely open for linear equations with variable coefficients and nonlinear equations. The aim of this paper is to tackle this problem for both the linear and nonlinear Schrödinger equations in the two-dimensional setting. By extending ideas and concepts presented earlier [X. Antoine and E. Lorin, Numer. Math. 137 (2017) 923–958] and by using pseudodifferential calculus, we prove the convergence and determine some approximate rates of convergence of the two-dimensional Classical SWR method for two subdomains with smooth boundary. Some numerical experiments are also proposed to validate the analysis.


2020 ◽  
Vol 92 (12) ◽  
pp. 1681-1706 ◽  
Author(s):  
Eric Ngondiep ◽  
Nabil Kerdid ◽  
Mohammed Abdulaziz Mohammed Abaoud ◽  
Ibrahim Abdulaziz Ibrahim Aldayel

Sign in / Sign up

Export Citation Format

Share Document