MONOCYTE-SPECIFIC ISOELECTRIC FOCUSING PATTERN OF LYSOSOMAL ACID ESTERASE : A NEW POSSIBILITY FOR CELL-SPECIFIC IMMUNOHISTOCHEMICAL IDENTIFICATION

1980 ◽  
pp. 683-686
Author(s):  
J. W. Wittke ◽  
H. J. Radzun ◽  
M. R. Parwaresch
Author(s):  
José A. Serrano ◽  
Hannah L. Wasserkrug ◽  
Anna A. Serrano ◽  
Arnold M. Seligman

As previously reported (1, 2) phosphorylcholine (PC) is a specific substrate for prostatatic acid phosphatase (PAP) as opposed to other acid phosphatases, e.g., lysosomal acid phosphatase. The specificity of PC for PAP is due to the pentavalent nitrogen in PC, a feature that renders PC resistant to hydrolysis by all other acid phosphatases. Detailed comparative cytochemical results in rat tissues are in press. This report deals with ultracytochemical results applying the method to normal and pathological human prostate gland.Fresh human prostate was obtained from 7 patients having transurethral resections or radical prostatectomies. The tissue was fixed in 3% glutaraldehyde- 0.1 M cacodylate buffer (pH 7.4) for 15 min, sectioned at 50 μm on a Sorvall TC-2 tissue sectioner, refixed for a total of 2 hr, and rinsed overnight in 0.1 M cacodylate buffer (pH 7.4)-7.5% sucrose.


Author(s):  
W. Allen Shannon ◽  
José A. Serrano ◽  
Hannah L. Wasserkrug ◽  
Anna A. Serrano ◽  
Arnold M. Seligman

During the design and synthesis of new chemotherapeutic agents for prostatic carcinoma based on phosphorylated agents which might be enzyme-activated to cytotoxicity, phosphorylcholine, [(CH3)3+NCH2CH2OPO3Ca]Cl-, has been indicated to be a very specific substrate for prostatic acid phosphatase (PAP). This phenomenon has led to the development of specific histochemical and ultracytochemical methods for PAP using modifications of the Gomori lead method for acid phosphatase. Comparative histochemical results in prostate and kidney of the rat have been published earlier with phosphorylcholine (PC) and β-glycerophosphate (βGP). We now report the ultracytochemical results.Minced tissues were fixed in 3% glutaraldehyde-0.1 M phosphate buffered (pH 7.4) for 1.5 hr and rinsed overnight in several changes of 0.05 M phosphate buffer (pH 7.0) containing 7.5% sucrose. Tissues were incubated 30 min to 2 hr in Gomori acid phosphatase medium (2) containing 0.1 M substrate, either PC or βGP.


1977 ◽  
Vol 38 (02) ◽  
pp. 0475-0485 ◽  
Author(s):  
Anna D. Borsodi ◽  
Ralph A. Bradshaw

SummaryThe plasma of individuals, hetero- or homozygous for α1-antitrypsin deficiency, contains greatly decreased amounts of antithrombin activity as assayed against factor Xa. However, heparin stimulation of the residual antithrombin activity is observed, which is comparable to that of normal plasma. Antithrombins isolated from both normal and α1-antitrypsin deficient plasma by a simplified procedure are indistinguishable in both properties and yields. The microheterogeneity observed on isoelectric focusing of both preparations can be eliminated by treatment with neuraminidase. Neither purified human antithrombin nor α1-antitrypsin, when assayed against bovine trypsin, is stimulated by heparin. These results clearly establish the unique natures of antithrombin and α1-antitrypsin and show that about 75% of the antithrombin activity measured in normal plasma is due to α1-antitrypsin. Estimates of anti thrombin III activity in normal plasma by assays dependent on enzymatic activity can probably be obtained only in the presence of heparin.


1973 ◽  
Vol 73 (3) ◽  
pp. 483-488 ◽  
Author(s):  
F. Adlkofer ◽  
H. Schleusener ◽  
L. Uher ◽  
A. Ananos ◽  
C. Brammeier

ABSTRACT Crude IgG of sera from 3 patients with Graves' disease, which contained LATS-activity and/or thyroid antibodies, was fractionated by isoelectric focusing in a pH-range between 6.0 to 10.0. LATS-activity was found in IgG-subfractions from pH 7.5 to 9.5, thyroglobulin antibodies and thyroid microsomal antibodies from pH 6.0 to 10.0. It was not possible to separate LATS-activity from the thyroid antibodies by this technique. The results indicate that LATS and the thyroid antibodies are heterogeneous and of polyclonal origin.


1971 ◽  
Vol 68 (1_Supplb) ◽  
pp. S15
Author(s):  
F. Adlkofer ◽  
H. Schleusener ◽  
L. Uher ◽  
H. J. Kirstaedter

Sign in / Sign up

Export Citation Format

Share Document