scholarly journals Multiprojective witness sets and a trace test

2020 ◽  
Vol 20 (3) ◽  
pp. 297-318 ◽  
Author(s):  
Jonathan D. Hauenstein ◽  
Jose Israel Rodriguez

AbstractIn the field of numerical algebraic geometry, positive-dimensional solution sets of systems of polynomial equations are described by witness sets. In this paper, we define multiprojective witness sets which encode the multidegree information of an irreducible multiprojective variety. Our main results generalise the regeneration solving procedure, a trace test, and numerical irreducible decomposition to the multiprojective case. Examples are included to demonstrate this new approach.

2018 ◽  
Vol 17 (10) ◽  
pp. 1850195
Author(s):  
Timothy M. McCoy ◽  
Chris Peterson ◽  
Andrew J. Sommese

Let [Formula: see text] be a set of elements in the polynomial ring [Formula: see text], let [Formula: see text] denote the ideal generated by the elements of [Formula: see text], and let [Formula: see text] denote the radical of [Formula: see text]. There is a unique decomposition [Formula: see text] with each [Formula: see text] a prime ideal corresponding to a minimal associated prime of [Formula: see text] over [Formula: see text]. Let [Formula: see text] denote the reduced algebraic set corresponding to the common zeroes of the elements of [Formula: see text]. Techniques from numerical algebraic geometry can be used to determine the numerical irreducible decomposition of [Formula: see text] over [Formula: see text]. This corresponds to producing a witness set for [Formula: see text] for each [Formula: see text] together with the degree and dimension of [Formula: see text] (a point in a witness set for [Formula: see text] can be considered as a numerical approximation for a general point on [Formula: see text]). The purpose of this paper is to show how to extend these results taking into account the field of definition for the polynomial system. In particular, let [Formula: see text] be a number field (i.e. a finite field extension of [Formula: see text]) and let [Formula: see text] be a set of elements in [Formula: see text]. We show how to extend techniques from numerical algebraic geometry to determine the numerical irreducible decomposition of [Formula: see text] over [Formula: see text].


2004 ◽  
Vol 126 (2) ◽  
pp. 262-268 ◽  
Author(s):  
Andrew J. Sommese ◽  
Jan Verschelde ◽  
Charles W. Wampler

For many mechanical systems, including nearly all robotic manipulators, the set of possible configurations that the links may assume can be described by a system of polynomial equations. Thus, solving such systems is central to many problems in analyzing the motion of a mechanism or in designing a mechanism to achieve a desired motion. This paper describes techniques, based on polynomial continuation, for numerically solving such systems. Whereas in the past, these techniques were focused on finding isolated roots, we now address the treatment of systems having higher-dimensional solution sets. Special attention is given to cases of exceptional mechanisms, which have a higher degree of freedom of motion than predicted by their mobility. In fact, such mechanisms often have several disjoint assembly modes, and the degree of freedom of motion is not necessarily the same in each mode. Our algorithms identify all such assembly modes, determine their dimension and degree, and give sample points on each.


2011 ◽  
Vol 14 ◽  
pp. 155-172 ◽  
Author(s):  
Rostam Sabeti

AbstractIn 1992, Göran Björck and Ralf Fröberg completely characterized the solution set of cyclic-8. In 2001, Jean-Charles Faugère determined the solution set of cyclic-9, by computer algebra methods and Gröbner basis computation. In this paper, a new theory in matrix analysis of rank-deficient matrices together with algorithms in numerical algebraic geometry enables us to present a symbolic-numerical algorithm to derive exactly the defining polynomials of all prime ideals of positive dimension in primary decomposition of cyclic-12. Empirical evidence together with rigorous proof establishes the fact that the positive-dimensional solution variety of cyclic-12 just consists of 72 quadrics of dimension one.


Acta Numerica ◽  
2011 ◽  
Vol 20 ◽  
pp. 469-567 ◽  
Author(s):  
Charles W. Wampler ◽  
Andrew J. Sommese

In this article, the basic constructs of algebraic kinematics (links, joints, and mechanism spaces) are introduced. This provides a common schema for many kinds of problems that are of interest in kinematic studies. Once the problems are cast in this algebraic framework, they can be attacked by tools from algebraic geometry. In particular, we review the techniques of numerical algebraic geometry, which are primarily based on homotopy methods. We include a review of the main developments of recent years and outline some of the frontiers where further research is occurring. While numerical algebraic geometry applies broadly to any system of polynomial equations, algebraic kinematics provides a body of interesting examples for testing algorithms and for inspiring new avenues of work.


Author(s):  
Saleh M. Almestiri ◽  
Andrew P. Murray ◽  
David H. Myszka

Numerical algebraic geometry is the field that studies the computation and manipulation of the solution sets of systems of polynomial equations. The goal of this paper is to formulate spherical linkages analysis and design problems via a method suited to employ the tools of numerical algebraic geometry. Specifically, equations are developed using special unitary matrices that naturally use complex numbers to express physical and joint parameters in a mechanical system. Unknown parameters expressed as complex numbers readily admit solution by the methods of numerical algebraic geometry. This work illustrates their use by analyzing the spherical four-bar and Watt I linkages. In addition, special unitary matrices are utilized to solve the five orientation synthesis of a spherical four-bar linkage. Moreover, synthesis equations were formulated for the Watt I linkage and implemented for an eight orientation task. Results obtained from this method are validated by comparison to other published work.


2014 ◽  
Vol 13 (06) ◽  
pp. 1450013 ◽  
Author(s):  
Francis N. Castro ◽  
Ivelisse M. Rubio

We present an elementary method to compute the exact p-divisibility of exponential sums of systems of polynomial equations over the prime field. Our results extend results by Carlitz and provide concrete and simple conditions to construct families of polynomial equations that are solvable over the prime field.


2008 ◽  
Vol 54 (5) ◽  
pp. 2303-2316 ◽  
Author(s):  
Randall Dougherty ◽  
Chris Freiling ◽  
Kenneth Zeger

2009 ◽  
Vol 52 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Jakob Cimprič

AbstractWe present a new approach to noncommutative real algebraic geometry based on the representation theory of C*-algebras. An important result in commutative real algebraic geometry is Jacobi's representation theorem for archimedean quadratic modules on commutative rings. We show that this theorem is a consequence of the Gelfand–Naimark representation theorem for commutative C*-algebras. A noncommutative version of Gelfand–Naimark theory was studied by I. Fujimoto. We use his results to generalize Jacobi's theorem to associative rings with involution.


Author(s):  
I. Nikitin

Given a bivariate system of polynomial equations with fixed support sets [Formula: see text] it is natural to ask which multiplicities its solutions can have. We prove that there exists a system with a solution of multiplicity [Formula: see text] for all [Formula: see text] in the range [Formula: see text], where [Formula: see text] is the set of all integral vectors that shift B to a subset of [Formula: see text]. As an application, we classify all pairs [Formula: see text] such that the system supported at [Formula: see text] does not have a solution of multiplicity higher than [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document