scholarly journals Coordinated Production Planning and Scheduling Problem in a Foundry

2017 ◽  
Vol 17 (3) ◽  
pp. 133-138
Author(s):  
A. Stawowy ◽  
J. Duda

Abstract In the paper, we present a coordinated production planning and scheduling problem for three major shops in a typical alloy casting foundry, i.e. a melting shop, molding shop with automatic line and a core shop. The castings, prepared from different metal, have different weight and different number of cores. Although core preparation does not required as strict coordination with molding plan as metal preparation in furnaces, some cores may have limited shelf life, depending on the material used, or at least it is usually not the best organizational practice to prepare them long in advance. Core shop have limited capacity, so the cores for castings that require multiple cores should be prepared earlier. We present a mixed integer programming model for the coordinated production planning and scheduling problem of the shops. Then we propose a simple Lagrangian relaxation heuristic and evolutionary based heuristic to solve the coordinated problem. The applicability of the proposed solution in industrial practice is verified on large instances of the problem with the data simulating actual production parameters in one of the medium size foundry.

2021 ◽  
Vol 54 (2) ◽  
pp. 273-281
Author(s):  
Güzin Tirkeş ◽  
Neşe Çelebi ◽  
Cenk Güray

A great deal of research has been undertaken in recent years related to facility capacity expansion and production planning problems under deterministic and stochastic constraints in the literature. However, only a small portion of this work directly addresses the issues faced by the food and beverage industry, especially in small-sized enterprises. In this study, a Mixed-Integer Linear Programming model (MILP) is developed for production planning and scheduling decisions for a small-size company producing syrup and jam products. The main constraint is that the multiple syrup and jam production lines in the model share the same limited-capacity module designed for inventory planning. To this end, the present model offers an efficient solution for executing a multi-product, multi-period production line by finding the most satisfactory strategy to match the right product with the useable capacity leading to profit maximization. The present approach is capable of coping with varying demands by offering a detailed costing procedure and implementing an effective inventory model.


2020 ◽  
Vol 7 (6) ◽  
pp. 761-774
Author(s):  
Kailash Changdeorao Bhosale ◽  
Padmakar Jagannath Pawar

Abstract Production planning and scheduling problems are highly interdependent as scheduling provides optimum allocation of resources and planning is an optimum utilization of these allocated resources to serve multiple customers. Researchers have solved production planning and scheduling problems by the sequential method. But, in this case, the solution obtained by the production planning problem may not be feasible for scheduling method. Hence, production planning and scheduling problems must be solved simultaneously. Therefore, in this work, a mathematical model is developed to integrate production planning and scheduling problems. The solution to this integrated planning and scheduling problem is attempted by using a discrete artificial bee colony (DABC) algorithm. To speed up the DABC algorithm, a k-means clustering algorithm is used in the initial population generation phase. This k-means clustering algorithm will help to converge the algorithm in lesser time. A real-life case study of a soap manufacturing industry is presented to demonstrate the effectiveness of the proposed approach. An objective function to minimize overall cost, which comprises the processing cost, material cost, utility cost, and changeover cost, is considered. The results obtained by using DABC algorithm are compared with those obtained by CPLEX software. There is a saving of ₹2 23 324 for weeks 1–4 in overall cost compared with the results obtained by using CPLEX software.


2022 ◽  
pp. 1-18
Author(s):  
Nan-Yun Jiang ◽  
Hong-Sen Yan

For the fixed-position assembly workshop, the integrated optimization problem of production planning and scheduling in the uncertain re-entrance environment is studied. Based on the situation of aircraft assembly workshops, the characteristics of fixed-position assembly workshop with uncertain re-entrance are abstracted. As the re-entrance repetition obeys some type of probability distribution, the expected value is used to describe the repetition, and a bi-level stochastic expected value programming model of integrated production planning and scheduling is constructed. Recursive expressions for start time and completion time of assembly classes and teams are confirmed. And the relation between the decision variable in the lower-level model of scheduling and the overtime and earliness of assembly classes and teams in the upper-level model of production planning is identified. Addressing the characteristics of bi-level programming model, an alternate iteration method based on Improved Genetic Algorithm (AI-IGA) is proposed to solve the models. Elite Genetic Algorithm (EGA) is introduced for the upper-level model of production planning, and Genetic Simulated Annealing Algorithm based on Stochastic Simulation Technique (SS-GSAA) is developed for the lower-level model of scheduling. Results from our experiments demonstrate that the proposed method is feasible for production planning and optimization of the fixed-position assembly workshop with uncertain re-entrance. And algorithm comparison verifies the effectiveness of the proposed algorithm.


2010 ◽  
Vol 44-47 ◽  
pp. 552-556
Author(s):  
Zhi Cong Zhang ◽  
Kai Shun Hu ◽  
Hui Yu Huang ◽  
Shuai Li

Traditional methods conduct production planning and scheduling separately and solve transfer lot sizing problem between these two steps. Unfortunately, this may result in infeasibility in planning and scheduling. We take into account transfer lot size in production planning to obtain the consistency and to eliminate the gap between planning and real production. We present the detailed Transfer Lot-Based Model with mixed integer programming. Experiments show that performance measures of a production plan change remarkably with increasing of transfer lot size.


Author(s):  
Liangliang Jin ◽  
Chaoyong Zhang ◽  
Xinyu Shao ◽  
Xudong Yang

The integration of process planning and scheduling is a very important problem because it proposes a new idea for improving the performance of a manufacturing system. At present, most existing studies on this problem are static, which assumes that all the jobs to be processed are available in the beginning. However, the practical processing situation is dynamic, such as new job arrivals. Since dynamic production situations are different with static cases, it is important to study the characteristics of actual production situations. In this article, the characteristics of dynamic integrated process planning and scheduling problem with job arrivals are studied. A novel mixed integer linear programming model is established to accommodate new job arrivals, and three criteria (makespan, stability, and tardiness) are considered. New periodic and event-driven rescheduling strategies are presented. In the proposed strategy, newly added jobs together with uncompleted jobs will be rescheduled by non-dominated sorting genetic algorithm-II to obtain the optimal Pareto front when the rescheduling procedure is triggered. The entropy-based weight assigning method together with the Technique for Order of Preference by Similarity to Ideal Solution method is adopted to determine an appropriate schedule among the resultant non-dominated solutions. A set of well-known benchmark instances is employed to investigate the characteristics of the dynamic integrated process planning and scheduling problem with random job arrivals. Experimental results show that the length of a scheduling interval, the number of newly added jobs, and the shop utilization have an important influence on the efficiency of a manufacturing system.


Sign in / Sign up

Export Citation Format

Share Document