scholarly journals Corrosion Behaviour Of Sintered AISI 316L Stainless Steel Modified With Boron-Rich Master Alloy In 0.5M NaCl Water Solution

2015 ◽  
Vol 60 (3) ◽  
pp. 1795-1800 ◽  
Author(s):  
A. Szewczyk-Nykiel ◽  
M. Skałoń ◽  
J. Kazior

Abstract Present study describes results of research conducted on sinters manufactured from a powdered AISI 316L austenitic stainless steel modified with an addition of boron-rich master alloy. The main aim was to study impact of the master alloy addition on a corrosion resistance of sinters in 0.5M water solution of NaCl. In order to achieve it, a potentiodynamic method was used. Corrosion tests results were also supplemented with a microstructures of near-surface areas. Scanning electron microscope pictures of a corroded surfaces previously exposed to the corrosive environment were taken and compared. It was successful to increase the corrosion resistance of AISI 316L sinters modified with master alloy. It was also successful in particular samples to obtain a densified superficial layer not only on the sinters sintered in the hydrogen but also on sinters sintered in the vacuum. No linear correlation between presence of the densified superficial layer and the enhanced corrosion resistance was noticed.

10.14311/1612 ◽  
2012 ◽  
Vol 52 (4) ◽  
Author(s):  
Mateusz Skaloń ◽  
Jan Kazior

AISI 316L austenitic stainless steel powder was modified with four different amounts of boron (0.1; 0.2; 0.3; 0.4 of wt. %) in the form of MasterAlloy micro-powder, and was sintered in a pure dry hydrogen atmosphere in order to obtain high density sintered samples characterized by a thickened non-porous surface layer. We investigated the influence of the amount of boron on: density, hardness, grain microhardness, porosity, microstructure and surface quality. The study revealed that it is possible by a conventional compacting and sintering process to obtain near full-density sintered samples with a non-porous superficial layer without boride precipitations.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
J. Jagadesh Kumar ◽  
G. Diwakar ◽  
Vaddi Venkata Satyanarayana

Purpose. The purpose of this research paper is to investigate the corrosion and fatigue life of AISI 316L austenitic stainless steel in the absence and presence of high-velocity oxy-fuel ZrO2 coating. Design/Methodology/Approach. AISI 316L austenitic stainless steel is chosen for the investigation, keeping in mind, its widespread usage in naval and marine applications where the members are exposed to corrosive sea water environment. ZrO2 coating is a popular surface treatment provided to mechanical members to improve their corrosion resistance. Being a refractory material, ZrO2 inhibits the corrosion of the AISI 316L austenitic stainless steel in marine applications. But, the study of the effect of ZrO2 coating on the corrosion and fatigue life of the material hitherto is scarce and hence the present investigation is undertaken. The corrosion and fatigue analysis of the coated specimens are carried out by taking two control parameters, namely, rotational speed of job and axial speed of torch, into consideration and applying L4 Taguchi orthogonal array. Findings. The corrosion resistance of the material has increased but the fatigue strength has decreased upon coating of ZrO2 on AISI 316L austenitic stainless steel. The failure has occurred because of the formation of oxide layers on the steel during coating.


2011 ◽  
Vol 214 ◽  
pp. 564-568 ◽  
Author(s):  
Shao Mei Zheng ◽  
Cheng Zhao

Plasma carburizing of AISI 316L austenitic stainless steel was carried out at low temperature to improve the surface hardness without degradation of its corrosion resistance. The microstructure, surface hardness, phase composition and corrosion property of the hardened layer were analyzed. The experimental results show that high-quality hardened layers can be produced at the carburizing temperatures between 673 K and 773 K, which have not only high surface hardness and wear resistance, but also good corrosion resistance. All of the hardened layers display a precipitation-free structure or Sc phase. The chromium carbides began to precipitate in the hardened layer as soon as the carburizing temperature is higher than 823 K. The precipitation of chromium carbides will lead to deterioration in corrosion resistance of the hardened stainless steel.


Alloy Digest ◽  
1998 ◽  
Vol 47 (12) ◽  

Abstract UGIMA 4404 (UGIMA 316L) is identical to UGINE 4404 (AISI 316L) in analysis, corrosion resistance, mechanical properties, and forging and welding ability, but not with respect to machinability. A specific melting process creates inclusions of malleable oxides with a low melting point. The inclusions improve machinability by 20-30% compared with AISI 316L (1.4404) stainless steel. This datasheet provides information on composition and physical properties. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SS-735. Producer or source: Ugine-Savoie.


Sign in / Sign up

Export Citation Format

Share Document