scholarly journals Mechanical Spectroscopy Of Equal-Channel Angular Pressed Fe-Cr Alloys And Tungsten

2015 ◽  
Vol 60 (3) ◽  
pp. 2101-2106 ◽  
Author(s):  
Ting Hao ◽  
Haiyin Tang ◽  
Weibin Jiang ◽  
Xianping Wang ◽  
Qianfeng Fang

Abstract Internal friction technique was used to investigate the microstructural stability of equal-channel angular pressed (ECAP) 9Cr1Mo steel (T91), Fe-18wt.%Cr alloy, and pure W. Several non-relaxation internal friction peaks are observed in three ECAP-strained specimens, which are related to the microstructural transition from a severely deformed state to a static recovery state of dislocations, and to recrystallized state. Along with the disappearance of the P1 peak, another relaxation internal friction peak P2 is observed during the second heating run only in Fe-18wt.%Cr alloy, and it does not disappear even during subsequent third heating run. This peak is not observed in T91 steel and W. The P2 peak is likely associated with a process of grain boundary (GB) sliding. Unlike T91, no abundant carbide precipitates distribute on GBs to pin GB and repulse GB sliding, thus, the P2 peak only occurs in Fe-18wt.%Cr alloy. It is concluded that high-temperature internal friction measurements are required to detect the grain boundary peak in pure W.

2012 ◽  
Vol 535-537 ◽  
pp. 1027-1030
Author(s):  
Xiao Hui Cao ◽  
Yu Wang

By using a low frequency inverted torsion pendulum, the high temperature internal friction spectra of Al-0.02wt%Zr and Al-0.1wt%Zr alloys were investigated respectively. In Al-0.02wt%Zr alloy, the conventional grain boundary internal friction peak (Pg) is observed with some small unstable peaks. In Al-0.1wt%Zr alloy, the bamboo peak is observed to appear at the high temperature side of the conventional grain boundary internal friction peak. The conventional grain boundary internal friction peak decreased and moved to higher temperature. The bamboo peak owns an activation energy of 1.75eV. When average grain size exceeded the diameter of samples, Pb strength was reduced and its position was shifted to a lower temperature. Based on the grain boundary sliding model, Pg and Pb peaks were explained. Their dependence on annealing temperature and time was determined by considering the effects of contained Ce atoms and other impurities on the relaxation across grain boundary.


2008 ◽  
Vol 137 ◽  
pp. 21-28 ◽  
Author(s):  
Andre Rivière ◽  
Michel Gerland ◽  
Veronique Pelosin

Internal friction peaks observed in single or polycrystals are clearly due to a dislocation relaxation mechanism. Because a sample observed by transmission electron microscopy (TEM) often exhibits in the same time various dislocation microstructures (isolated dislocations, dislocation walls, etc.) it is very difficult to connect the observed relaxation peak with a particular dislocation microstructure. Using isothermal mechanical spectroscopy (IMS), it is easier to compare, for instance, the evolution of a relaxation peak with measurement temperature to the microstructural evolution observed by in-situ TEM at the same temperatures. IMS was used to study a relaxation peak in a 5N aluminium single crystal firstly 1% cold worked and then annealed at various temperatures. TEM experiments performed in the same material at various temperatures equal to the temperatures used for the damping experiments made possible to link this internal friction peak with a relaxation effect occurring inside dislocation walls. In two other experiments in a 4N aluminium polycrystal and in a metal matrix composite with SiC whiskers, it is shown that the observed relaxation peaks are connected to the motion of dislocations inside polygonization boundaries in the first case and in dislocation pile-ups around each whisker in the second one. Theoretical models proposed to explain such relaxation peaks due to a dislocation motion inside a dislocation wall or network are discussed.


M ◽  
2009 ◽  
pp. 447-447-10
Author(s):  
P Gadaud ◽  
A Rivière ◽  
J Woirgard

2012 ◽  
Vol 184 ◽  
pp. 355-360 ◽  
Author(s):  
Sergey Kustov ◽  
R. Santamarta ◽  
E. Cesari ◽  
K. Sapozhnikov ◽  
V. Nikolaev ◽  
...  

The internal friction of the hyperstabilized martensite demonstrates very low values, both above and below the nominal martensitic transformation temperature, due to a pronounced pinning effect. Over a wide temperature range it is comparable with the level of damping in the parent phase. A study of the temperature dependence of the non-linear ultrasonic internal friction and its strain amplitude hysteresis indicates that the diffusion, assisted by dislocations/interfaces, is quite pronounced and in Ni-Fe-Ga and Cu-Al-Be alloys it operates at temperatures around 20 K. The renucleation of the lamellar parent phase during the reverse martensitic transformation close to 600 K is accompanied by an internal friction peak which demonstrates a substantial transitory contribution. After renucleation of the parent phase the samples recover a conventional martensitic transformation with the internal friction level in the martensite comparable to the one in non-stabilized samples. Observations of a relaxation peak in the parent phase of different alloys for temperatures just below the renucleation stage of the reverse transformation point to the essential role of diffusion in the nucleation of the parent phase in hyperstabilized martensites.


2015 ◽  
Vol 60 (4) ◽  
pp. 3069-3072
Author(s):  
M.L. Nó ◽  
L. Dirand ◽  
A. Denquin ◽  
J. San Juan

In the present work we have studied the high-temperature shape memory alloys based on the Ru-Nb system by using two mechanical spectrometers working in temperature ranges from 200 to 1450ºC and -150 to 900ºC. We have studied internal friction peaks linked to the martensitic transformations in the range from 300 to 1200ºC. In addition, we have evidenced another internal friction peak at lower temperature than the transformations peaks, which apparently exhibits the behaviour of a thermally activated relaxation peak, but in fact is a strongly time-dependent peak. We have carefully studied this peak and discussed its microscopic origin, concluding that it is related to the interaction of some structural defects with martensite interfaces. Finally, we perform a complete analysis of the whole internal friction spectrum, taking into account the possible relationship between the time-dependent peak and the martensitic transformation behaviour.


1988 ◽  
Vol 22 (3) ◽  
pp. 395-400 ◽  
Author(s):  
F. Cosandey ◽  
J.J. Amman ◽  
R. Schaller ◽  
W. Benoit

1990 ◽  
Vol 25 (1) ◽  
pp. 519-521
Author(s):  
Z. M. Farid ◽  
S. Saleh ◽  
S. A. Mahmoud

Sign in / Sign up

Export Citation Format

Share Document