scholarly journals Empirical Models of Zones Protecting Against Coal Dust Explosion

2017 ◽  
Vol 62 (3) ◽  
pp. 611-619 ◽  
Author(s):  
Dariusz Prostański

Abstract The paper presents predicted use of research’ results to specify relations between volume of dust deposition and changes of its concentration in air. These were used to shape zones protecting against coal dust explosion. Methodology of research was presented, including methods of measurement of dust concentration as well as deposition. Measurements were taken in the Brzeszcze Mine within framework of MEZAP, co-financed by The National Centre for Research and Development (NCBR) and performed by the Institute of Mining Technology KOMAG, the Central Mining Institute (GIG) and the Coal Company PLC. The project enables performing of research related to measurements of volume of dust deposition as well as its concentration in air in protective zones in a number of mine workings in the Brzeszcze Mine. Developed model may be supportive tool in form of system located directly in protective zones or as operator tool warning about increasing hazard of coal dust explosion.

2021 ◽  
Vol 15 (4) ◽  
pp. 130-138
Author(s):  
Olena Zavialova ◽  
Viktor Kostenko ◽  
Natalia Liashok ◽  
Mykola Grygorian ◽  
Tetiana Kostenko ◽  
...  

Purpose. Assessing the process of damaging factors formation during the coal aerosol explosion in mine workings on the basis of theoretical research of the explosion of coal dust deposits in order to substantiate promising methods of protecting miners from their impact. Methods. An integrated approach is used, which includes a critical analysis of literature data on the occurrence and development of coal aerosol explosions in mine workings; theoretical research into the state of the gaseous medium at the characteristic points of the development diagram of the coal dust deposits explosion as a result of mining operations based on the laws of classical physics and chemistry. Findings. The main aspects of the explosion mechanism of dust in a powdery state, accumulated on the surfaces along the mine working perimeter, and the formation of such negative factors as the effect of gaseous medium accelerated movement, have been revealed; high temperature formed during coal and methane detonative combustion; increased gas pressure. The revealed aspects of the dust explosion mechanism make it possible to determine the main directions for protection of miners caught in the explosion. The diagram of the development of settled coal dust explosion along the mine working with normal ventilation conditions, taking into account the influence of seismic waves, has been improved. Originality. Analytical dependences, reflecting the value of gas energy at characteristic points of the diagram, have been determined, and the dynamics of the formation of negative factors caused by the explosion have been revealed. Practical implications. Possible ways of protecting miners from the impact of negative factors caused by the coal aerosol explosion and reducing the severe consequences of such accidents are proposed.


2012 ◽  
Vol 57 (3) ◽  
pp. 517-534 ◽  

Abstract The paper presents factors determining dust explosion hazards occurring in underground hard coal mines. The authors described the mechanism of transport and deposition of dust in mines entries and previous research on this topic. The paper presents a method of determination of depositing dust distribution during mining and presents the way to use it to assess coal dust explosion risk. The presented method of calculating the intensity of coal dust deposition is based on continuous monitoring of coal dust concentrations with use of optical sensors. Mathematical model of the distribution of the average coal dust concentration was created. Presented method allows to calculate the intensity of coal dust deposition in a continuous manner. Additionally, the authors presented the PŁ-2 stationary optical dust sampler, used in the study, connected to the monitoring system in the mine. The article features the results of studies conducted in the return air courses of the active longwalls, and the results of calculations of dust deposition intensity carried out with the use of the presented method.


2021 ◽  
Vol 69 ◽  
pp. 104374
Author(s):  
Qingxi Wei ◽  
Yansong Zhang ◽  
Kun Chen ◽  
Bo Liu ◽  
Xiangbao Meng ◽  
...  

2016 ◽  
Vol 77 ◽  
pp. 06014
Author(s):  
Latana Chanthaphasouk ◽  
Kreangkrai Maneeintr ◽  
Pinyo Meechumna ◽  
Suteera Luengwattanapong ◽  
Chantamanee Poonjarernsilp

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Wen-Zheng Wang ◽  
Yan-Ming Wang ◽  
Guo-Qing Shi

Respirable coal particle generated during underground mining is the main cause for gas-dust explosions and coal workers’ pneumoconiosis (CWP) which needs accurate monitoring especially on its concentration. Focusing on the coal dust pollution in the fully mechanized working face of Huangbaici coalmine, coal particle was sampled for further industrial analysis and FT-IR test to obtain its chemical composition and optical constant. Combined with the simulated spatial distribution of airborne dust, the spectral transmission characteristics of coal dust within wavelengths of 2.5 to 25 μm under different operating conditions were obtained. The simulation results show that the transmittance and aerosol optical depth (AOD) of coal dust are closely linked and obviously influenced by the variation of dust generation source (intensity of dust release, position of coal cutting, and the wetting of the coal seam) and airflow field (wind speed and direction of ventilation). Furthermore, an optical channel of 1260–1280 cm−1(7.937–7.813 μm) which is almost only sensitive to the variation of dust concentration but dull to the diameter change of coal dust was selected to establish the correlation of dust concentration and infrared transmittance. The fitting curve was then applied to retrieve the equivalent dust concentration based on optical information, and the comparison results demonstrate that the estimated pollution level is consistent with field measurement data in engineering practice.


2009 ◽  
Vol 15 (3) ◽  
pp. 262-266 ◽  
Author(s):  
Rong-jun Si ◽  
Run-zhi Li ◽  
Lei Wang ◽  
Zi-ke Wu

Sign in / Sign up

Export Citation Format

Share Document