scholarly journals Experimental study of coal dust deposition in mine workings with the use of empirical models

2021 ◽  
Vol 14 (2) ◽  
Author(s):  
Dariusz Prostański
2017 ◽  
Vol 62 (3) ◽  
pp. 611-619 ◽  
Author(s):  
Dariusz Prostański

Abstract The paper presents predicted use of research’ results to specify relations between volume of dust deposition and changes of its concentration in air. These were used to shape zones protecting against coal dust explosion. Methodology of research was presented, including methods of measurement of dust concentration as well as deposition. Measurements were taken in the Brzeszcze Mine within framework of MEZAP, co-financed by The National Centre for Research and Development (NCBR) and performed by the Institute of Mining Technology KOMAG, the Central Mining Institute (GIG) and the Coal Company PLC. The project enables performing of research related to measurements of volume of dust deposition as well as its concentration in air in protective zones in a number of mine workings in the Brzeszcze Mine. Developed model may be supportive tool in form of system located directly in protective zones or as operator tool warning about increasing hazard of coal dust explosion.


2012 ◽  
Vol 518-523 ◽  
pp. 4819-4822
Author(s):  
Jin Feng Liu ◽  
Shun Yang ◽  
Guo Qiang Ou

The deposition prediction of debris flow hazardous area is very important for organizing and implementing debris flow disaster prevention and reduction. This paper selected the data base from laboratory experiments and applied the multiple regression statistical method to establish a series of empirical calculation models for delimiting the debris flow hazardous areas on the alluvial fan. The empirical models for predicting the maximum deposition length (Lc), the maximum deposition width (Bmax) and the maximum deposition thichness (Z0) under the condition of different debris flow volumes (V), densities (rm) and slopes of accumulation area (θd) were establised. And the verification results indicated that the established models can predict the debris flow hazards area with the average accuracy of 86%.


Author(s):  
Bo Zhao ◽  
Shugang Li ◽  
Haifei Lin ◽  
Yueying Cheng ◽  
Xiangguo Kong ◽  
...  
Keyword(s):  

2021 ◽  
Vol 15 (4) ◽  
pp. 130-138
Author(s):  
Olena Zavialova ◽  
Viktor Kostenko ◽  
Natalia Liashok ◽  
Mykola Grygorian ◽  
Tetiana Kostenko ◽  
...  

Purpose. Assessing the process of damaging factors formation during the coal aerosol explosion in mine workings on the basis of theoretical research of the explosion of coal dust deposits in order to substantiate promising methods of protecting miners from their impact. Methods. An integrated approach is used, which includes a critical analysis of literature data on the occurrence and development of coal aerosol explosions in mine workings; theoretical research into the state of the gaseous medium at the characteristic points of the development diagram of the coal dust deposits explosion as a result of mining operations based on the laws of classical physics and chemistry. Findings. The main aspects of the explosion mechanism of dust in a powdery state, accumulated on the surfaces along the mine working perimeter, and the formation of such negative factors as the effect of gaseous medium accelerated movement, have been revealed; high temperature formed during coal and methane detonative combustion; increased gas pressure. The revealed aspects of the dust explosion mechanism make it possible to determine the main directions for protection of miners caught in the explosion. The diagram of the development of settled coal dust explosion along the mine working with normal ventilation conditions, taking into account the influence of seismic waves, has been improved. Originality. Analytical dependences, reflecting the value of gas energy at characteristic points of the diagram, have been determined, and the dynamics of the formation of negative factors caused by the explosion have been revealed. Practical implications. Possible ways of protecting miners from the impact of negative factors caused by the coal aerosol explosion and reducing the severe consequences of such accidents are proposed.


2011 ◽  
Vol 26 ◽  
pp. 1851-1856 ◽  
Author(s):  
Li Zhen-feng ◽  
Cao Shao-long ◽  
An An ◽  
Hu Peng

RSC Advances ◽  
2018 ◽  
Vol 8 (68) ◽  
pp. 38903-38909 ◽  
Author(s):  
Wenning Zhou ◽  
Juan Ma ◽  
Guoliang Zeng ◽  
Baiqian Liu

A theoretical explanation and experimental study of dust cake formation and growth in a novel dynamic granular filter are presented.


2019 ◽  
Vol 34 (4) ◽  
pp. 47-55
Author(s):  
Hadis Moradi ◽  
◽  
Farhang Sereshki ◽  
Mohammad Ataei ◽  
Mohsen Nazari ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiyou Zhu ◽  
Xinna Zhang ◽  
Weijun He ◽  
Xuemei Yan ◽  
Qiang Yu ◽  
...  

Abstract To quantitatively reflect the relationship between dust and plant spectral reflectance. Dust from different sources in the city were selected to simulate the spectral characteristics of leaf dust. Taking Euonymus japonicus as the research object. Prediction model of leaf dust deposition was established based on spectral parameters. Results showed that among the three different dust pollutants, the reflection spectrum has 6 main reflection peaks and 7 main absorption valleys in 350–2500 nm. A steep reflection platform appears in the 692–763 nm band. In 760–1400 nm, the spectral reflectance gradually decreases with the increase of leaf dust coverage, and the variation range was coal dust > cement dust > pure soil dust. The spectral reflectance in 680–740 nm gradually decreases with the increase of leaf dust coverage. In the near infrared band, the fluctuation amplitude and slope of its first derivative spectrum gradually decrease with the increase of leaf dust. The biggest amplitude of variation was cement dust. With the increase of dust retention, the red edge position generally moves towards short wave direction, and the red edge slope generally decreases. The blue edge position moved to the short wave direction first and then to the long side direction, while the blue edge slope generally shows a decreasing trend. The yellow edge position moved to the long wave direction first and then to the short wave direction (coal dust, cement dust), and generally moved to the long side direction (pure soil dust). The yellow edge slope increases first and then decreases. The R2 values of the determination coefficients of the dust deposition prediction model have reached significant levels, which indicated that there was a relatively stable correlation between the spectral reflectance and dust deposition. The best prediction model of leaf dust deposition was leaf water content index model (y = 1.5019x − 1.4791, R2 = 0.7091, RMSE = 0.9725).


Sign in / Sign up

Export Citation Format

Share Document