scholarly journals Fractional approximation of solutions of evolution equations

Analysis ◽  
2016 ◽  
Vol 36 (2) ◽  
Author(s):  
Anatoly N. Kochubei ◽  
Yuri G. Kondratiev

AbstractWe show how to approximate a solution of the first order linear evolution equation, together with its possible analytic continuation, using a solution of the time-fractional equation of order

2021 ◽  
Vol 19 (1) ◽  
pp. 111-120
Author(s):  
Qinghua Zhang ◽  
Zhizhong Tan

Abstract This paper deals with the abstract evolution equations in L s {L}^{s} -spaces with critical temporal weights. First, embedding and interpolation properties of the critical L s {L}^{s} -spaces with different exponents s s are investigated, then solvability of the linear evolution equation, attached to which the inhomogeneous term f f and its average Φ f \Phi f both lie in an L 1 / s s {L}_{1\hspace{-0.08em}\text{/}\hspace{-0.08em}s}^{s} -space, is established. Based on these results, Cauchy problem of the semi-linear evolution equation is treated, where the nonlinear operator F ( t , u ) F\left(t,u) has a growth number ρ ≥ s + 1 \rho \ge s+1 , and its asymptotic behavior acts like α ( t ) / t \alpha \left(t)\hspace{-0.1em}\text{/}\hspace{-0.1em}t as t → 0 t\to 0 for some bounded function α ( t ) \alpha \left(t) like ( − log t ) − p {\left(-\log t)}^{-p} with 2 ≤ p < ∞ 2\le p\lt \infty .


2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Gul I Hina Aslam ◽  
Amjad Ali ◽  
Maimona Rafiq

In this note, the variational form of the classical Lax–Milgram theorem is used for the divulgence of variational structure of the first-order noninstantaneous impulsive linear evolution equation. The existence and uniqueness of the weak solution of the problem is obtained. In future, this constructive theory can be used for the corresponding semilinear problems.


2018 ◽  
Vol 7 (2) ◽  
pp. 37 ◽  
Author(s):  
Mousa Ilie ◽  
Jafar Biazar ◽  
Zainab Ayati

Obtaining analytical or numerical solution of fractional differential equations is one of the troublesome and challenging issues among mathematicians and engineers, specifically in recent years. The purpose of this paper is to solve linear and nonlinear fractional differential equations such as first order linear fractional equation, Bernoulli, and Riccati fractional equations by using Lie Symmetry method, based on conformable fractional derivative. For each equation, some numerical examples are presented to illustrate the proposed approach.  


Sign in / Sign up

Export Citation Format

Share Document