scholarly journals Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth

2017 ◽  
Vol 8 (1) ◽  
pp. 583-602 ◽  
Author(s):  
Alessandro Fonda ◽  
Rodica Toader

Abstract We prove the existence and multiplicity of subharmonic solutions for Hamiltonian systems obtained as perturbations of N planar uncoupled systems which, e.g., model some type of asymmetric oscillators. The nonlinearities are assumed to satisfy Landesman–Lazer conditions at the zero eigenvalue, and to have some kind of sublinear behavior at infinity. The proof is carried out by the use of a generalized version of the Poincaré–Birkhoff Theorem. Different situations, including Lotka–Volterra systems, or systems with singularities, are also illustrated.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fanfan Chen ◽  
Dingbian Qian ◽  
Xiying Sun ◽  
Yinyin Wu

<p style='text-indent:20px;'>We prove the existence and multiplicity of subharmonic solutions for bounded coupled Hamiltonian systems. The nonlinearities are assumed to satisfy Landesman-Lazer conditions at the zero eigenvalue, and to have some kind of sublinear behavior at infinity. The proof is based on phase plane analysis and a higher dimensional version of the Poincaré-Birkhoff twist theorem by Fonda and Ureña. The results obtained generalize the previous works for scalar second-order differential equations or relativistic equations to higher dimensional systems.</p>


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shuang Wang ◽  
Dingbian Qian

Abstract We investigate the multiplicity of subharmonic solutions for indefinite planar Hamiltonian systems J ⁢ z ′ = ∇ ⁡ H ⁢ ( t , z ) {Jz^{\prime}=\nabla H(t,z)} from a rotation number viewpoint. The class considered is such that the behaviour of its solutions near zero and infinity can be compared two suitable positively homogeneous systems. Our approach can be used to deal with the problems in absence of the sign assumption on ∂ ⁡ H ∂ ⁡ x ⁢ ( t , x , y ) {\frac{\partial H}{\partial x}(t,x,y)} , uniqueness and global continuability for the solutions of the associated Cauchy problems. These systems may also be resonant. By the use of an approach of rotation number, the phase-plane analysis of the spiral properties of large solutions and a recent version of Poincaré–Birkhoff theorem for Hamiltonian systems, we are able to extend previous multiplicity results of subharmonic solutions for asymptotically semilinear systems to indefinite planar Hamiltonian systems.


2014 ◽  
Vol 6 (01) ◽  
pp. 87-106
Author(s):  
Xueyang Li ◽  
Aiguo Xiao ◽  
Dongling Wang

AbstractThe generating function methods have been applied successfully to generalized Hamiltonian systems with constant or invertible Poisson-structure matrices. In this paper, we extend these results and present the generating function methods preserving the Poisson structures for generalized Hamiltonian systems with general variable Poisson-structure matrices. In particular, some obtained Poisson schemes are applied efficiently to some dynamical systems which can be written into generalized Hamiltonian systems (such as generalized Lotka-Volterra systems, Robbins equations and so on).


2018 ◽  
Vol 16 (1) ◽  
pp. 1435-1444 ◽  
Author(s):  
Peng Mei ◽  
Zhan Zhou

AbstractWe consider a 2nth-order nonlinear difference equation containing both many advances and retardations with p-Laplacian. Using the critical point theory, we obtain some new explicit criteria for the existence and multiplicity of periodic and subharmonic solutions. Our results generalize and improve some known related ones.


2012 ◽  
Vol 12 (3) ◽  
Author(s):  
Alberto Boscaggin

AbstractUsing a recent modified version of the Poincaré-Birkhoff fixed point theorem [19], we study the existence of one-signed T-periodic solutions and sign-changing subharmonic solutions to the second order scalar ODEu′′ + f (t, u) = 0,being f : ℝ × ℝ → ℝ a continuous function T-periodic in the first variable and such that f (t, 0) ≡ 0. Partial extensions of the results to a general planar Hamiltonian systems are given, as well.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Qi Wang ◽  
Qingye Zhang

By the Maslov index theory, we will study the existence and multiplicity of homoclinic orbits for a class of asymptotically linear nonperiodic Hamiltonian systems with some twisted conditions on the Hamiltonian functions.


Sign in / Sign up

Export Citation Format

Share Document