scholarly journals Choquard-type equations with Hardy–Littlewood–Sobolev upper-critical growth

2018 ◽  
Vol 8 (1) ◽  
pp. 1184-1212 ◽  
Author(s):  
Daniele Cassani ◽  
Jianjun Zhang

Abstract We are concerned with the existence of ground states and qualitative properties of solutions for a class of nonlocal Schrödinger equations. We consider the case in which the nonlinearity exhibits critical growth in the sense of the Hardy–Littlewood–Sobolev inequality, in the range of the so-called upper-critical exponent. Qualitative behavior and concentration phenomena of solutions are also studied. Our approach turns out to be robust, as we do not require the nonlinearity to enjoy monotonicity nor Ambrosetti–Rabinowitz-type conditions, still using variational methods.

2018 ◽  
Vol 20 (04) ◽  
pp. 1750037 ◽  
Author(s):  
Fashun Gao ◽  
Minbo Yang

In this paper, we are concerned with the following nonlinear Choquard equation [Formula: see text] where [Formula: see text], [Formula: see text] and [Formula: see text]. If [Formula: see text] lies in a gap of the spectrum of [Formula: see text] and [Formula: see text] is of critical growth due to the Hardy–Littlewood–Sobolev inequality, we obtain the existence of nontrivial solutions by variational methods. The main result here extends and complements the earlier theorems obtained in [N. Ackermann, On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z. 248 (2004) 423–443; B. Buffoni, L. Jeanjean and C. A. Stuart, Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc. 119 (1993) 179–186; V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015) 6557–6579].


2020 ◽  
Vol 10 (1) ◽  
pp. 732-774
Author(s):  
Zhipeng Yang ◽  
Fukun Zhao

Abstract In this paper, we study the singularly perturbed fractional Choquard equation $$\begin{equation*}\varepsilon^{2s}(-{\it\Delta})^su+V(x)u=\varepsilon^{\mu-3}(\int\limits_{\mathbb{R}^3}\frac{|u(y)|^{2^*_{\mu,s}}+F(u(y))}{|x-y|^\mu}dy)(|u|^{2^*_{\mu,s}-2}u+\frac{1}{2^*_{\mu,s}}f(u)) \, \text{in}\, \mathbb{R}^3, \end{equation*}$$ where ε > 0 is a small parameter, (−△)s denotes the fractional Laplacian of order s ∈ (0, 1), 0 < μ < 3, $2_{\mu ,s}^{\star }=\frac{6-\mu }{3-2s}$is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality and fractional Laplace operator. F is the primitive of f which is a continuous subcritical term. Under a local condition imposed on the potential V, we investigate the relation between the number of positive solutions and the topology of the set where the potential attains its minimum values. In the proofs we apply variational methods, penalization techniques and Ljusternik-Schnirelmann theory.


2014 ◽  
Vol 16 (03) ◽  
pp. 1350030 ◽  
Author(s):  
Roberta Musina ◽  
K. Sreenadh

We use variational methods to study the existence of non-trivial and radially symmetric solutions to the Hénon–Lane–Emden system with weights, when the exponents involved lie on the "critical hyperbola". We also discuss qualitative properties of solutions and non-existence results.


2014 ◽  
Vol 58 (2) ◽  
pp. 305-321 ◽  
Author(s):  
Xiaojun Chang

AbstractIn this paper, we study a time-independent fractional Schrödinger equation of the form (−Δ)su + V(x)u = g(u) in ℝN, where N ≥, s ∈ (0,1) and (−Δ)s is the fractional Laplacian. By variational methods, we prove the existence of ground state solutions when V is unbounded and the nonlinearity g is subcritical and satisfies the following geometry condition:


Sign in / Sign up

Export Citation Format

Share Document